Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hải

Cho S= 1.2.3 + 2.3.4 + 3.4.5 + ... + k(k+1)(k+2)

Chứng minh rằng 4S + 1 là số chính phương.

witch roses
15 tháng 6 2015 lúc 18:52

S.4=1.2.3.4+2.3.4.4+...+k(k+1)(k+1).4

=1.2.3(4-0)+2.3.4.(5-1)+...+k(k+1)(k+2)(k+3-k-1)

=1.2.3.4-0+1.2.3.4-2.3.4.5+...+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)

=(k-1)k(k+1)(k+2)

=>4S+1=(k-1)k(k+1)(k+2)+1

do (k-1)k(k+1)(k+2) là tích 4 số tự nhiên liên tiếp mà tích 4 số tự nhiên liên tiếp +1 luôn là số chính phương ( cái này bạn tự chứng minh )

=> 4S+1 là số chính phương (đpcm)

Mạnh Lê
13 tháng 3 2017 lúc 22:39

Ta có: k(k + 1)(k + 2) = 1/4. k(k + 1)(k + 2). 4
= 1/4. k(k + 1)(k + 2). [(k + 3) - (k - 1)]
= 1/4. k(k + 1)(k + 2)(k + 3) - 1/4. k(k + 1)(k + 2)(k - 1)
=> 4S = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + k(k + 1)(k + 2)(k + 3) - k(k + 1)(k + 2)(k - 1)
= k(k + 1)(k + 2)(k + 3)
=> 4S + 1 = k(k + 1)(k + 2)(k + 3) + 1
Đây là tổng của 4 số liên tiếp cộng 1 nên luôn là số chính phương.

Hiếu Phạm Chung
22 tháng 7 2017 lúc 20:30

bạn wicth roses sai r

4 ko = k+3-k-1


Các câu hỏi tương tự
Thiên Hương
Xem chi tiết
nguyễn thu ngà
Xem chi tiết
Aquamonst
Xem chi tiết
Kim Châm
Xem chi tiết
nguyen van nam
Xem chi tiết
Legendary
Xem chi tiết
Nguyễn Mạnh Cường
Xem chi tiết
Năm jyu
Xem chi tiết
Nguyen tien dung
Xem chi tiết