Mỗi phân số \(\frac{1}{11},\frac{1}{12},\frac{1}{13},...,\frac{1}{19}\)đều lớn hơn \(\frac{1}{20}\)
Do đó,\(S>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}(\)10 dãy \()\)
\(\Rightarrow S>\frac{10}{20}=\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\)
\(\frac{1}{11}>\frac{1}{20}\)
\(\frac{1}{12}>\frac{1}{20}\)
\(⋮\)
\(\frac{1}{20}=\frac{1}{20}\)
Suy ra \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)(có 10 số \(\frac{1}{20}\))
\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\) (10 số hạng
\(S< \frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)(10 số hạng
\(S< \frac{1}{20}.10\)
\(S< \frac{1}{2}\)
\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\)
\(S< \frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)
\(S< \frac{1}{20}.10=\frac{1}{2}\)