S=2^2006-1
5.2^2004=(2.2+1)2^2004=4.2^2004+2^2004=2^2006+2^2004
=>S<5.2^2004
ta có:\(S=1+2+2^2+...+2^{2005}\left(1\right)\)
\(2S=2+2^2+2^3+...+2^{2006}\left(2\right)\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{2006}\right)-\left(1+2+2^2+...+2^{2005}\right)\)
\(\Rightarrow S=2^{2006}-1\Rightarrow S=2^2.2^{2004}-1\Rightarrow S=4.2^{2004}-1\Rightarrow S< 5.2^{2004}\)
S=2^2006 - 1
5.2^200=(2.2+10.2^2004=4.2^2004+2^2004=2^2006+2^2004