Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
KIM TAE HYUNG

Cho R = \((\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{x^3}\sqrt{y^3}}{y-x}):\frac{(\sqrt{x}-\sqrt{y})^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

a. Tìm điều kiện xác định

b. Rút gọn

c. cmr R\(\ge\)0

Khánh Ngọc
22 tháng 9 2020 lúc 16:45

a. ĐKXĐ : \(\hept{\begin{cases}x\ge0\\y\ge0\\y-x\ne0\end{cases}}\)<=> \(\hept{\begin{cases}x\ge0\\y\ge0\\x\ne y\end{cases}}\)

b. \(R=\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

\(\Leftrightarrow R=\left(\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}+\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{y-x}\right):\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(\Leftrightarrow R=\left(\sqrt{x}+\sqrt{y}-\frac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right):\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(\Leftrightarrow R=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(\Leftrightarrow R=\frac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{x-\sqrt{xy}+y}\)

\(\Leftrightarrow R=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

c. Với \(\hept{\begin{cases}x\ge0\\y\ge0\\x\ne y\end{cases}}\)thì \(\sqrt{xy}\ge0\)  ( 1 )

Ta có : \(x-\sqrt{xy}+y=\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}\)

Mà \(\orbr{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\\\left(1\right)\end{cases}}\)=> \(x-\sqrt{xy}+y\ge0\)( 2 )

Từ ( 1 ) và ( 2 ) => \(R\ge0\) ( Đpcm )

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Thảo My
Xem chi tiết
Nguyễn Mai
Xem chi tiết
Trương Ngọc Đức
Xem chi tiết
Dark Killer
Xem chi tiết
Nguyễn Hương Ly
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Nguyễn Hương Ly
Xem chi tiết
Nàng tiên cá
Xem chi tiết
Thanh Huyền Nguyễn
Xem chi tiết