Cho \(Q=\frac{a^3-3a^2+3a-1}{a^2-1}\)
a, rút gọn Q
b, Tìm giá trị Q khi /a/ = 5
cho Q =\(\frac{a^2-3a^2+3a-1}{a^2-1}\)
a, rút gọn Q
b, tìm giá trị của Q khi /a/ =5
Cho Q=\(\dfrac{a^3-3a^2+3a-1}{a^2-1}\)
a,Rút gọn Q
b,Tìm giá trị của Q khi |a|=5
Cho biểu thức K= \(\left(\frac{a+3}{3a}+\frac{2}{a+1}-3\right):\frac{2-4a}{a+1}-\frac{3a+1-a^2}{3a}\)
a)Tìm điều kiện để K xác định
b) Rút gọn K
c)tìm K để a=2005
d) Tìm a để K có giá trị âm
f) Tìm a thuộc Z để K có giá trị dương
Cho biểu thức D=(\(\dfrac{a-1}{3a+\left(a-1\right)^2}\)-\(\dfrac{1-3a+a^2}{a^3-1}\)-\(\dfrac{1}{a-1}\)) : \(\dfrac{a^2+1}{1-a}\)
a) Tìm những giá trị của a để D xác định
b)Rút gọn D
c)Tìm giá trị của a để \(\dfrac{1}{D}\)nhỏ nhất và tìm giá trị nhỏ nhất đó
cho biểu thức
Q = <(a+2)/(a-2)-(a-2)/(a+2)-(4a^2)(/4-a^2)>:(a^2-3a)/10a-5a^2)
a, Rút gọn Q
b, Tìm các gtrị nguyên của a để Q chia hết 20
A=(\(\frac{a^2}{a^3-4a}\)+\(\frac{6}{6-3a}\)+\(\frac{1}{a+2}\)) : (\(\frac{a-2}{a+1}\)-\(\frac{a-1}{a+2}\))
1) rút gọn A
2) tìm các giá trị của a để A<0
3) tìm các giá trị của a để sao cho biểu thức A nhận giá trị nguyên
Cho biểu thức: \(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)
a)Rút gọn A
b) Tìm giá trị của a để biểu thức A đạt giá trị lớn nhất.
\(choQ=\frac{a^3-3a^2+3a-1}{a^2-1}\)
a) rút gọn Q
b) tìm a để Q<0