1 . Cho hai đường thẳng (d1):mx+(m-2)y+m+2=0 và (d2):(2-m)x+my-m-2=0
a) Tìm điểm cố định mà (d1) luôn đi qua và điểm cố định mà (d2) luôn đi qua
b) Chứng minh hai đường thẳng (d1) ,(d2) luôn cắt nhau tại một điểm I và khi m thay
đổi thì điểm I luôn thuộc một đường tròn cố định.
2 . Cho các số thực a, b, c, d thỏa mãn a > 1, b > 1, c > 1, d > 1. Chứng minh
\(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge16\)
Cho hàm số y=mx+2m+1(d). Chứng minh rằng với mọi giá trị của m thì học đường thẳng d luôn đi qua 1 điểm cố định. Hãy xác định điểm cố định đó.
Trong cùng mặt phẳng tọa độ, cho Parabol:y=-\(\dfrac{1}{2}\)x\(^2\) và đường thẳng
d:y=mx-2m-1. Chứng tỏ d luôn đi qua một điểm cố định A thuộc (P).
Cho hai đường thẳng (d1):mx+(m-2)y+m+2=0 và (d2):(2-m)x+my-m-2=0
a) Tìm điểm cố định mà (d1) luôn đi qua và điểm cố định mà (d2) luôn đi qua
b) Chứng minh hai đường thẳng (d1) ,(d2) luôn cắt nhau tại một điểm I và khi m thay
đổi thì điểm I luôn thuộc một đường tròn cố định.
cho hàm số y=\(-\frac{x^2}{4}\)(P) và đường thẳng y=mx-2m-1 (d)
a, vẽ (p)
b, tìm m để (p) tiếp xúc với (d)
c, chứng tỏ rằng (d) luôn đi qua 1 điểm cố định A\(\in\)(P)
Cho đường thẳng (d) : y = mx +1 và parabol : y = x2
a,Chứng minh rằng với mọi m thì (d) luôn đi qua 1 điểm cố định ?
b,Chứng minh rằng (P) luôn cắt (d) tại 2 điểm phân biệt với mọi m ?
Cho đường thẳng (d): y= (m+1)x +2m -3. Chứng minh rằng với mọi m đường thẳng (d) luôn luôn đi qua một điểm cố định. Xác định điểm cố định đó.
Chứng minh rằng đường thăng (d): mx+(2m-1)y+3=0 ( m là tham số ) luôn đi qua một điểm cố định với mọi giá trị của m.