P(x)=x^5+3x^3+4x^2+2x-4
Q(x)=x^5-x^4-2^3+3x+4
P(x)+Q(x)=2x^5-x^4+x^3+4x^2+5x
a, P(x)= x^5+3x^3+4x^2+4x-4
Q(x)= x^5-x^4-2x^3+3x-4
b, P(x)+Q(x)= 2x^5-x^4+x^3+4x^2+x-8
a) \(P\left(x\right)=x^5+3x^3+4x^2+2x-4\)
\(Q\left(x\right)=x^5-x^4-2x^3+3x+4\)
b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+3x^3+4x^2+2x-4\right)+\left(x^5-x^4-2x^3+3x+4\right)\)
\(P\left(x\right)+Q\left(x\right)=\left(x^5+x^5\right)+\left(3x^3-2x^3\right)+4x^2+\left(2x+3x\right)+\left(-4+4\right)\)
\(P\left(x\right)+Q\left(x\right)=2x^5+x^3+4x^2+5x\)
a) \(P\left(x\right)=x^5+3x^3+4x^2+2x-4\)
\(Q\left(x\right)=x^5-x^4-2x^3+3x+4\)
b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+3x^3+4x^2+2x-4\right)+\left(x^5-x^4-2x^3+3x+4\right)\)
\(P\left(x\right)+Q\left(x\right)=\left(x^5+x^5\right)-x^4+\left(3x^3-2x^3\right)+4x^2+\left(2x+3x\right)+\left(-4+4\right)\)
\(P\left(x\right)+Q\left(x\right)=2x^5-x^4+x^3+4x^2+5x\)
a.P(x)= x5+3x3+4x2+2x-4
Q(x)=x5- x4 -2x3 +3x +4
b.P(x)+Q(x)=2x5+x3+4x2+5x-x4
a, P(x)= x^5+3x^3+4x^2+4x-4
Q(x)= x^5-x^4-2x^3+3x-4
b, P(x)+Q(x)= 2x^5-x^4+x^3+4x^2+x-8
a) sau khi sắp xếp 2 đa thức theo lũy thừa giảm của biến ,ta có:
P(x) = x5 + 3x3 + 4x2 + 2x - 4
Q(x) = x5 - x4 - 2x3 + 3x + 4
b) tính P(x) + Q(x)
cách 1: P(x) + Q(x) = ( x5 + 3x3 + 4x2 + 2x - 4 ) + ( x5 - x4 - 2x3 + 3x + 4 )
= x5 + 3x3 + 4x2 + 2x - 4 + x5 - x4 - 2x3 + 3x +4
= ( x5 + x5) - x4 + (3x3 - 2x3 ) + 4x2 + (2x + 3x) + ( - 4 + 4 )
= 2x5 - x4 + x3 + 4x2 + 5x
cách 2 :
P(x) = x5 + 3x3 + 4x2 + 2x - 4
+
Q(x) = x5 - x4 - 2x3 + 3x + 4
P(x)+Q(x) =2x5 - x4 + x3 + 4x2 + 5x