Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
roronoa zoro

Cho pt: \(x^2+6x+6a-a^2=0\)

a) Tìm a để pt có nghiệm 

b) Gỉa sử x1; x2 là 2 nghiệm của pt. Tìm a để 2 nghiệm của pt thỏa mãn: \(\left(x_1\right)^3-8x_1=x_2\)

Tran Le Khanh Linh
29 tháng 5 2020 lúc 21:05

a) Phương trình đã cho có \(\Delta'=36-6a+a^2=a^2-6a+9+27=\left(a-3\right)^3+27>0\) nên có 2 nghiệm phân biệt với mọi a

b) Theo hệ thức Vi-et ta có \(x_1+x_2=6\Leftrightarrow x_2=6-x_1\)

Ta có \(x_2=x_1^3-8x_1\Leftrightarrow x_1^3-8x_1=6-x_1\Leftrightarrow x_1^3-7x_1-6=0\)

\(\Leftrightarrow x_1^3-x_1-6x_1-6=0\Leftrightarrow x_1\left(x_1-1\right)\left(x_1+1\right)-6\left(x_1+1\right)=0\)

\(\Leftrightarrow\left(x_1+1\right)\left(x_1^2-x_1-6\right)=0\Leftrightarrow\left(x_1+1\right)\left(x_1^2+2x_1-3x_1-6\right)=0\)

\(\Leftrightarrow\left(x_1+1\right)\left[x_1\left(x_1+2\right)-3\left(x_1+2\right)\right]=0\Leftrightarrow\left(x_1+1\right)\left(x_1+2\right)\left(x_1-3\right)=0\)

\(\Leftrightarrow x_1\in\left\{-1;-2;3\right\}\)

*) \(x_1=-1\Leftrightarrow\left(-1\right)^2-6\left(-1\right)+6a-a^2=0\Leftrightarrow a^2-6a-7=0\Leftrightarrow\orbr{\begin{cases}a=-1\\a=7\end{cases}}\)

*) \(x_1=-2\Leftrightarrow\left(-2\right)^2-6\left(-2\right)+6a-a^2=0\Leftrightarrow a^2-6a-16=0\Leftrightarrow\orbr{\begin{cases}a=-2\\a=8\end{cases}}\)

*) \(x_1=3\Leftrightarrow3^2-6\cdot3+6a-a^2=0\Leftrightarrow a^2-6a+9=0\Leftrightarrow a=3\)

Vậy \(a=\left\{-1;-2;3;7;8\right\}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
roronoa zoro
Xem chi tiết
ngan kim
Xem chi tiết
....
Xem chi tiết
NOOB
Xem chi tiết
Scarlett
Xem chi tiết
Nguyên Hoàng
Xem chi tiết
Khánh Anh
Xem chi tiết
Lorina Macmillan
Xem chi tiết
Trần Quang Chiến
Xem chi tiết