a/ \(\Delta=1-4m\ge0\Rightarrow m\le\frac{1}{4}\)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m\end{matrix}\right.\)
b/ \(\Delta=97^2-4n\ge0\Rightarrow n\le\frac{9409}{4}\)
Gọi \(a;b\) là các nghiệm của (2) \(\Rightarrow\left\{{}\begin{matrix}a+b=97\\ab=n\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}a=x_1^4\\b=x_2^4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=x_1^4+x_2^4=\left(x_1^2+x_2^2\right)^2-2\left(x_1x_2\right)^2\\ab=\left(x_1x_2\right)^4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2\left(x_1x_2\right)^2\\ab=\left(x_1x_2\right)^4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=\left(1-2m\right)^2-2m^2=2m^2-4m+1\\ab=m^4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2m^2-4m+1=97\\n=m^4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=8\\m=-6\end{matrix}\right.\\n=m^4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}n=4096\left(l\right)\\n=1296\end{matrix}\right.\)