\(x^2-mx-3=0\)
\(\Delta=m^2+12>0\)nên phương trình luôn có hai nghiệm phân biệt \(x_1,x_2\).
Theo định lí Viete ta có:
\(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-3\end{cases}}\).
\(\left(x_1+6\right)\left(x_2+6\right)==2019\)
\(\Leftrightarrow x_1x_2+6\left(x_1+x_2\right)+36=2019\)
\(\Rightarrow-3+6m+36=2019\)
\(\Leftrightarrow m=331\)..