Gọi x1 , x2 là nghiệm của pt x^2+2009x+1=0 và x3,x4 là nghiệm của pt x^2 +2010 +1=0
Tính giá trị biểu thức (x1+x3)(x2+x3)(x1-x4)(x2-x4)
Cho pt 4x^2 +3x-1 có 2 nghiệm x1,x2 ko giải pt tính giá trị biểu thức A= -2(x1-2)(x2-2)
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3
cho PT: x2-2mx 2m-2=0(1) m là tham số
a) GPT(1) khi m=1
b)CM: PT(1) luôn có 2 nghiệm x1, x2 với các giá trị nào của tham số m thì x12 x22=12c) với x1, x2 là 2 nghiệm của pt (1) , tìm giá trị lớn nhất của biểu thức A= 6(x1 x2)/x12 x12 4(x1 x2)
cho pt : x2 - 4x + m + 1 = 0
a.Giải pt khi m=2
b.tìm giá trị của m để pt có 2 nghiệm x1,x2 thỏa mãn đẳng thức x12+x22=5(x1+x2)
Cho pt : x^2+(m+2)x+m-1=0. chứng minh rằng pt đã cho luôn có hai nghiệm phân biệt x1;x2 với mọi m. Khi đó, tìm m để biểu thức A=x1^2+x2^2-3x1x2 đạt giá trị nhỏ nhất.
Cho phương trình x^2-2(m-1)x+n+1=0
a, Với giá trị nào của m,n pt đã cho có 2 nghiệm x1=1,x2=-2
b, Khi m-n=4 hãy tính giá trị nhỏ nhất của biểu thức P=x1^2+x2^2
cho pt bậc 2, ẩn x : x2 - 2(m +1)x + 2m = 0 gọi x1,x2 là 2 no của pt .Chứng tỏ giá trị biểu thức M = x1+x2 - x1.x2 không phụ thuộc vào giá trị của m
cho pt \(x^2-2\left(m+1\right)x+m^2-1=0\)
a)giải pt (1) khi m=2
B) với giá trị nào của m thì pt(1) có 2 nghiệm x1+x2 thỏa mãn x1+x2;x1+x2=1