Phương trình: \(x^2-2\left(m-1\right)x+m-4=0\left(1\right)\)
a/ Xét phương trình (1) có \(\Delta=4\left(m-1\right)^2-4\left(m-4\right)\)
= \(4m^2-8m+4-4m+16\)
= \(4m^2-12m+20\)
= \(\left(2m-3\right)^2+11\)
Ta luôn có: \(\left(2m-3\right)^2\ge0\) với mọi m
\(\Rightarrow\left(2m-3\right)^2+11>0\) với mọi m
\(\Leftrightarrow\Delta>0\) với mọi m
Vậy phương trình (1) có 2 nghiệm phân biệt với mọi giá trị của m
b/ Xét phương trình (1), áp dụng hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=m-4\end{matrix}\right.\)
Theo đề bài ta có:
\(A=x_1\left(1-x_2\right)+x_2\left(1-x_1\right)\)
= \(x_1-x_1x_2+x_2-x_1x_2\)
=\(\left(x_1+x_2\right)-2x_1x_2\)
= \(2\left(m-1\right)-2\left(m-4\right)\)
= 2m-2-2m+8
= 6
Vậy biểu thức \(A=x_1\left(1-x_2\right)+x_2\left(1-x_1\right)\) không phụ thuộc vào m