Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
NNKLynn

Cho PT \(x^2-19x+9+=0_{ }\) có 2 nghiệm dương phân việt x1,x2. Ko giải PT hãy tính T = \(\dfrac{x_1\sqrt{x_1}+x_2\sqrt{x_2}}{x_1^2+x_2^2}\)

Akai Haruma
4 tháng 5 2023 lúc 13:46

Lời giải:

Theo định lý Viet:

$x_1+x_2=19$

$x_1x_2=9$

Khi đó:
\(x_1\sqrt{x_1}+x_2\sqrt{x_2}=(\sqrt{x_1})^3+(\sqrt{x_2})^3=(\sqrt{x_1}+\sqrt{x_2})(x_1-\sqrt{x_1x_2}+x_2)\)

\(=(\sqrt{x_1}+\sqrt{x_2})(19-\sqrt{9})=16(\sqrt{x_1}+\sqrt{x_2})\)

\(=16\sqrt{x_1+x_2+2\sqrt{x_1x_2}}=16\sqrt{19+2\sqrt{9}}=80\)

\(x_1^2+x_2^2=(x_1+x_2)^2-2x_1x_2=19^2-2.9=343\)

$\Rightarrow P=\frac{80}{343}$


Các câu hỏi tương tự
Lương Ngọc Anh
Xem chi tiết
NNKLynn
Xem chi tiết
NOOB
Xem chi tiết
Lương Ngọc Anh
Xem chi tiết
Lương Ngọc Anh
Xem chi tiết
Su Su
Xem chi tiết
Lương Ngọc Anh
Xem chi tiết
trần minh khôi
Xem chi tiết
....
Xem chi tiết