Lời giải:
PT $\Leftrightarrow x(m-2)=m^2-4$
a) Để pt nhận $1$ là nghiệm thì $1(m-2)=m^2-4$
$\Leftrightarrow m-2=m^2-4=(m-2)(m+2)$
$\Leftrightarrow (m-2)(m+2-1)=0$
$\Leftrightarrow (m-2)(m+1)=0\Rightarrow m=2$ hoặc $m=-1$
b) Để pt có nghiệm thì:
\(\left[\begin{matrix} m-2\neq 0\\ m-2=m^2-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m\neq 2\\ m=2\end{matrix}\right.\) hay $m\in\mathbb{R}$
Vậy pt có nghiệm với mọi $m\in\mathbb{R}$
c) Kết quả phần b suy ra không tồn tại giá trị của $m$ để pt vô nghiệm.