Có: `\Delta'=1^2-(-m^2+1)=m^2`
PT có 2 nghiệm phân biệt `<=> m^2>0 <=> m \ne 0`
`=> x_1=2+m; x_2=2-m`
Theo đề: `x_2=x_1^2 <=>2-m=(2+m)^2<=>[(m=(-5+\sqrt17)/2(L)),(m=(-5-\sqrt17)/2(L))`
Vậy không có `m` thỏa mãn.
Có: `\Delta'=1^2-(-m^2+1)=m^2`
PT có 2 nghiệm phân biệt `<=> m^2>0 <=> m \ne 0`
`=> x_1=2+m; x_2=2-m`
Theo đề: `x_2=x_1^2 <=>2-m=(2+m)^2<=>[(m=(-5+\sqrt17)/2(L)),(m=(-5-\sqrt17)/2(L))`
Vậy không có `m` thỏa mãn.
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3
cho phương trình : x^2 - 2(m+1)x + m^2 +1=0 tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn x1- x2= 1
Cho pt xã -4x4 m=0 (*). Tìm m để phương trình (*) có 2 nghiệm x1, x2 thỏa mãn hệ thức 2x1 + x2 = 1 Cho pt: 2x2 3x-2m +3 = 0 ("). Tìm m để phương trình (") có 2 nghiệm phân biệt x1, x2 thỏa mãn hệ thức x1/x2 + xz/x1 =3 Cho pt xã 4x - m + 3 = 0 (*). Tìm m để phương trình (*) có 2 nghiệm x1, x2 thỏa mãn hệ thức x1-x2=7 Giải gấp chi tiết giúp e vs ạ
Cho phương trình x^2-(2m-1)x+4m-4=0. Tìm m để cho phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn x1+x2^2=5
Cho phương trình x^2-2(m+3)x+m^2-1=0
a)Với giá trị nào của m thì phương trình có hai nghiệm phân biệt.
b)Tìm m để phương trình có 2 nghiệm x1,x2 thỏa mãn (x1+x2)^2-x1.x2+97
tìm m để phương trình x^2-2mx+m-1=0 có 2 nghiệm phân biệt x1,x2. thỏa mãn x1<x2 và căn x1^2 -x2=3
cho phương trình x^2 - 2(m+2)x + m + 1 =0 (m là tham số). tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn hệ thức x1(1-2x2) + x2(1-2x1) =m^2
tìm m để phương trình \(x^2-\left(m-1\right)x-2=0\)có 2 nghiệm phân biệt x1 và x2 (x1>x2) thỏa mãn \(|2x1|-|x2|=2+x1\)
Cho phương trình x^2 - 2(m+1)x + 2m -2 =0. Tìm giá trị của m để phương trình đã cho có 2 nghiệm phân biệt x1 và x2 thỏa mãn x1^2 + x2^2 + 3x1x2 = 25.