Cho phương trình: x2 - mx + m -1 = 0 với m là tham số.
Gọi \(x_1\), \(x_2\) là hai nghiệm của phương trình. Tìm giá trị nhỏ nhất và lớn nhất của biểu thức:
C = \(\dfrac{2x_1x_2+3}{x^2_1+x^2_2+2\left(x_1x_2+1\right)}\)
Cho phương trình x2-mx+m-1=0 (1).Gọi x1,x2 là các nghiệm của phương trình (1).Đặt B=\(\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2\left(x_1x_2+1\right)}\) , giá trị nhỏ nhất của B là
A.-1 B.\(\dfrac{-1}{4}\) C.\(\dfrac{1}{2}\) D.\(\dfrac{-1}{2}\)
Cho phương trình
(m2 +m +1) x2 -(m2 +2m+2) x-1=0
a) chứng tỏ rằng phương trình có hai nghiệm trái dấu.
b) gọi x1, x2 là hai nghiệm của phương trình trên. Tìm giá trị lớn nhất và nhỏ nhất của tổng: s= x1 +x2
Cho phương trình \(x^2-\left(2m+3\right)x+m=0\)
a) Chứng minh rằng phương trình đã cho có nghiệm với mọi m.
b) goi x1,x2
là các nghiệm của phương trình. tìm m để T=\(x_1^2+x_2^2\) đạt giá trị nhỏ nhất.
Cho phương trình \(x^2-ax+a-1=0\) có hai nghiệm \(x_1,x_2\)
\(a\)) Không giải phương trình, hãy tính giá trị của biểu thức: \(M=\dfrac{3x_1^2+3x_2^2-3}{x_1^2x_2+x_1x_2^2}\)
\(b\)) Tìm giá trị của \(a\) để: \(P=x_1^2+x_2^2\) đạt giá trị nhỏ nhất.
Gọi x1 x2 là 2 nghiệm của phương trình. Tìm m để \(y=\frac{-9}{x_1^2+x_2^2-x_1x_2-3}\)đạt giá trị nhỏ nhất
x1 + x2= 2(m+1) x1.x2= m
Cho phương trình: x2 - (m + 2).x + 2m = 0. Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1.x_2}{4}\)
Cho phương trình \(x^2-\left(2m-1\right)x+2m-2=0\)
Gọi \(x_1\),\(x_2\) là 2 nghiệm của phương trình. Tìm giá trị của m để biểu thức \(A=x_1^2+x_2^2\) đạt giá trị nhỏ nhất.
Cho phương trình : \(x^2-mx-4=0\)
Gọi x1,x2 là hai nghiệm phân biệt của phương trình. Tìm giá trị nhỏ nhất của biểu thức A= \(\frac{2\left(x_1+x_2\right)+7}{x_1^2+x_2^2}\)