\(\left(m+1\right)x^3+\left(3m-1\right)x^2-x-4m+1=0\)
<=> (m.x3 - m) + (x3 - x) + (3mx2 - 3m) - (x2 - 1) = 0
<=> m(x - 1)(x2 + x + 1) + x(x - 1).(x+1) + 3m(x - 1)(x+1) - (x -1)(x+ 1) = 0
<=> (x - 1).[m(x2 + x+ 1) + x(x+1) + 3m(x+ 1) - (x+1)] = 0
<=> (x - 1).(mx2 + mx + m + x2 + x + 3mx + 3m - x - 1) = 0
<=> (x - 1).[(m + 1)x2 + 4mx + 4m - 1)] = 0 (*)
b) (*) <=> x = 1 hoặc (m + 1)x2 + 4mx + 4m - 1) = 0 (1)
Để (*) có 3 nghiệm phân biệt trong đó có 2 ngiệm âm <=> (1) có 2 nghiệm âm phân biệt
<=> m+ 1 \(\ne\) 0 và \(\Delta\)' > 0 và x1.x2 > 0 và x1 + x2 < 0 trong đó x1; x2 là hai nghiệm của (1)
+) m + 1 \(\ne\) 0 <=> m \(\ne\) - 1
+) \(\Delta\)' = (2m)2 - (m + 1).(4m- 1) = 4m2 - 4m2 - 3m + 1 = -3m + 1 > 0 => m < 1/3
+) Theo hệ thức Vi ét ta có: x1 + x2 = \(-\frac{4m}{m+1}\); x1.x2 = \(\frac{4m-1}{m+1}\)
=> \(-\frac{4m}{m+1}\) < 0 và \(\frac{4m-1}{m+1}\) > 0
=> \(\frac{4m}{m+1}>0\) và \(\frac{4m+1}{m+1}\) > 0 => \(\frac{4m}{m+1}\) > 0 => 4m và m + 1 cùng dấu
=> m > 0 hoặc m < -1
Kết hợp điều kiện m < 1/3 và m \(\ne\) -1 => m < - 1 hoặc 0 < m < 1/3
Vậy...
đơn giản .tìm NCPT hoac TLCT gi do la co
a)\(\left(m+1\right)x^3-\left(m+1\right)x^2+4mx^2-4mx+\left(4m-1\right)x-\left(4m-1\right)=0\)
\(\left(x-1\right)\left[\left(m+1\right)x^2+4mx+4m-1\right]=0\)
b) => x =1 là 1 nghiệm của pt
Đẻ PT có 3 nghiệm phân biệt trong đoa có 2 nghiệm âm
=>\(\left(m+1\right)x^2+4mx+4m-1=0\)có 2 nghiệm phân biệt âm
+ m \(\ne\)-1
+ \(\Delta'=4m^2-\left(m+1\right)\left(4m-1\right)>0\)=>m<1/3
+ S =\(-\frac{4m}{m+1}<0\Rightarrow m<-1hoac;m>0\)
+P=\(\frac{4m-1}{m+1}>0\Leftrightarrow m<-1;hoac;m>\frac{1}{4}\)
=> m< -1 hoặc 1/4<m<1/3 thì PT có 3 nghiệm phân biệt trong đó 1 nghiệm x=1; hai nghiệm kia âm