Cho phương trình m . l n 2 ( x + 1 ) - ( x + 2 - m ) l n ( x + 1 ) - x - 2 = 0 (1). Tập hợp tất cả các giá trị của tham số m để phương trình (1) có hai nghiệm phân biệt thoả mãn 0 < x 1 < 2 < 4 < x 2 là khoảng . Khi đó a thuộc khoảng
Cho phương trình ( m - 5 ) . 3 x + ( 2 m - 2 ) . 2 x . 3 x + ( 1 - m ) . 4 x = 0 , tập hợp tất cả các giá trị của tham số m để phương trình có hai nghiệm phân biệt là khoảng (a;b). Tính S=a+b
A.4
B.5
C.6
D.8
Gọi S = (a; b) là tập tất cả các giá trị của tham số thực m để phương trình
log 2 ( m x - 6 x 3 ) + log 1 2 ( - 14 x 2 + 29 x - 2 ) = 0 có 3 nghiệm phân biệt. Khi đó hiệu H = b-a bằng
A. 5 2
B. 1 2
C. 2 3
D. 5 3
Cho hàm số y = ax 3 + bx 2 + cx + d với a ≠ 0 có hai hoành độ cực trị là x=1 và x=3. Tập hợp tất cả các giá trị của tham số m để phương trình f(x) = f(m) có đúng ba nghiệm phân biệt là:
A. .
B. .
C. .
D. .
Cho hàm số y = a x 3 + b x 2 + c x + d với a khác 0 có hai hoành độ cực trị là x=1 và x=3. Tập hợp tất cả các giá trị của tham số m để phương trình f(x) = f(m) có đúng ba nghiệm phân biệt là:
Cho phương trình 2 log 4 2 x 2 - x + 2 m - 4 m 2 + log 1 2 x 2 + m x - 2 m 2 = 0 . Biết rằng S = a ; b ∪ c ; d , a < b < c < d là tập hợp các giá trị của tham số m để phương trình đã cho có hai nghiệm phân biệt x1, x2 thỏa mãn x 1 2 + x 2 2 > 1 . Tính giá trị biểu thức A = a + b + 5c + 2d.
A. A = 1
B. A = 2
C. A = 0
D. A = 3
Tìm tập các giá trị thực của tham số m để phương trình 4 ( 2 + 1 ) x + 2 - 1 x - m = 0 có đúng hai nghiệm âm phân biệt.
A. (2;4)
B. (3;5)
C. (4;5)
D. (5;6)
gọi S là tập hợp tất cả các giá trị m để phương trình m lnx - x lnm = x-m có 2 nghiệm phân biệt. tìm tập S
Tập hợp tất cả các giá trị thực của tham số m để phương trình
8 x - m 2 2 x + 1 + ( 2 m 2 - 1 ) 2 x + m - m 3 có ba nghiệm thực phân biệt là khoảng (a;b). Tính S = ab
A. S = 2 3
B. S = 4 3
C. S = 3 2
D. S = 5 3 3