Giả sử P chưa tối giản, tức là tử và mẫu chung có thể được rút gọn thêm bởi một số nguyên dương khác 1. Ta có:
P = (2n+2) / (n+2)
Vì n thuộc Z và khác -2, nên n+2 khác 0. Nếu n+2 chia 2 thì ta có thể rút 2 chung cho tử và mẫu được:
P = (2(n+1)) / (n+2) = 2 - 2/(n+2)
Khi đó, để P không tối giản thì n+2 phải là một ước của 2. Như vậy, n+2 bằng 2, 4, 8 hoặc −2, −4, −8.
Để tìm n thỏa mãn P không tối giản và n^2<100, ta thử lần lượt các giá trị của n từ -9 đến 8, kiểm tra xem n+2 có phải là ước của 2 không (bằng cách kiểm tra số dư khi chia cho 2), và kiểm tra n^2<100 hay không. Kết quả là:
n=-8: không thỏa mãn điều kiện ước của 2 và n^2<100. n=-7: thỏa mãn, vì n+2=-5 chia hết cho 2 và n^2=49<100. n=-6: không thỏa mãn điều kiện ước của 2. n=-5: không thỏa mãn điều kiện ước của 2. n=-4: không thỏa mãn điều kiện ước của 2 và n^2<100. n=-3: thỏa mãn, vì n+2=-1 chia hết cho 2 và n^2=9<100. n=-2: không thỏa mãn điều kiện của đề bài. n=-1: không thỏa mãn điều kiện ước của 2 và n^2<100. n=0: không thỏa mãn điều kiện ước của 2. n=1: không thỏa mãn điều kiện ước của 2 và n^2<100. n=2: không thỏa mãn điều kiện của đề bài. n=3: không thỏa mãn điều kiện ước của 2 và n^2<100. n=4: thỏa mãn, vì n+2=6 chia hết cho 2 và n^2=16<100. n=5: không thỏa mãn điều kiện ước của 2 và n^2<100. n=6: không thỏa mãn điều kiện ước của 2. n=7: không thỏa mãn điều kiện ước của 2 và n^2<100. n=8: thỏa mãn, vì n+2=10 chia hết cho 2 và n^2=64<100.
Vậy có hai giá trị n thỏa mãn đề bài, đó là n=-7 và n=8.