Phân số tồi giản là phân số không thể chia hết một số nào vì thế ta chứng minh
\(\frac{a}{b}\) = Ư\(\varnothing\) (a,b)
= đpcm
Phân số tồi giản là phân số không thể chia hết một số nào vì thế ta chứng minh
\(\frac{a}{b}\) = Ư\(\varnothing\) (a,b)
= đpcm
Cho phân số ab tối giản
CM: phân số \(\frac{a.b}{a^2+b^2}\) tối giản
Cho phân số a/ b tối giản . CM : a+b/b cũng tối giản ?
a) cho phân số tối giản \(\frac{a}{b}\) (a<b) và b khác 0. Chứng tỏ rằng phân số \(\frac{b-a}{b}\) cũng tối giản
b) lấy phân số \(\frac{a}{b}\) tối giản thì phân số \(\frac{a}{a+b}\) có tối giản không
Cho phân số \(\frac{a}{b}\) là phân số tối giản . Chứng tỏ rằng phân số \(\frac{a}{a+b}\) cũng là phân số tối giản
a) Cho phân số \(\frac{a}{b}\) tối giản . Vì sao \(\frac{a+b}{b}\) cũng tối giản
b) Cho phân số \(\frac{a}{b}\) tối giản . Vì sao \(\frac{a-b}{b}\) cũng tối giản
Rung rinh 3 tik
Cho phân số \(\frac{a}{b}\)tối giản. Chứng minh rằng phân số\(\frac{2a+b}{a\left(a+b\right)}\)tối giản
Cho phân số \(\frac{a}{b}\)là phân số tối giản. Hỏi phân số \(\frac{a}{a+b}\) có phải phân số tối giản không ?
Chứng tỏ rằng nếu phân số \(\frac{a}{b}\) là tối giản thì phân số \(\frac{a+b}{b}\) cũng tối giản. Suy ra \(\frac{246913579}{123456790}\) là tối giản.
Chứng tỏ rằng nếu phân số \(\frac{a}{b}\)là phân số tối giản thì phân số \(\frac{a+b}{b}\)cũng là phân số tối giản.