\(\frac{x}{y+z+t}=\frac{y}{x+z+t}=\frac{z}{x+y+t}=\frac{t}{x+y+z}=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=\frac{1}{3}\)
\(3x=y+z+t\)
\(3y=x+z+t\)
\(3x+3y=x+y+2z+2t\)
\(x+y=z+t\)
Tương tự ta được
\(y+z=x+t\)
P=1+1+1+1=4
\(\frac{x}{y+z+t}=\frac{y}{x+z+t}=\frac{z}{x+y+t}=\frac{t}{x+y+z}=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=\frac{1}{3}\)
\(3x=y+z+t\)
\(3y=x+z+t\)
\(3x+3y=x+y+2z+2t\)
\(x+y=z+t\)
Tương tự ta được
\(y+z=x+t\)
P=1+1+1+1=4
cho dãy tỉ số bằng nhau :$\frac{x}{y+z+t}$=$\frac{y}{z+t+x}$=$\frac{z}{t+x+y}$=$\frac{t}{x+y+z}$ cmr : "$\frac{x+y}{z+t}$=$\frac{y+z}{t+x}$=$\frac{z+t}{x+y}$=$\frac{t+z}{y+z}$"
Cho \(\frac{x}{y+z+t}\)= \(\frac{y}{z+t+x}\)= \(\frac{z}{t+x+y}\)= \(\frac{t}{x+y+z}\)( giả thuyết các tỉ số đều có nghĩa ) giúp mik vs
Cho biết: \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Tính: \(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
\(Cho:P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{z+y}\)
Tính P biết: \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
BIẾT \(\frac{X}{Y+Z+T}=\frac{Y}{Z+T+X}=\frac{Z}{T+X+Y}=\frac{T}{X+Y+Z}\)
TÍNH P=\(\frac{X+Y}{Z+T}+\frac{X+Z}{T+X}+\frac{Z+T}{X+Y}+\frac{T+X}{Y+Z}\)
cho x,y,z,t thuoc R* sao cho:
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Tính P=\(\frac{x+y}{z+t}+\frac{y+z}{x+t}+\frac{z+t}{x+y}+\frac{x+t}{y+z}\)
Cho biết:\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{x+t+y}=\frac{t}{x+y+z}.\)
Tính giá trị \(M=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}.\)
Cho \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\) và x;y;z;t khác 0
Tính M biết \(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
Cho \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Tính : P = \(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{z+y}\)