Cho parabol (P): y = x^2 và đường thẳng (d): y = mx + m + 3. Tìm m để đường thẳng
(d) cắt parabol (P) tại hai điểm phân biệt ở bên phải trục tung.
Cho parabol (P): y = x 2 và đường thẳng d: y = (m + 2)x – m – 1. Tìm m để d cắt (P) tại hai điểm phân biệt nằm về hai phía trục tung
A. m < −1
B. m < −2
C. m > −1
D. −2 < m < −1
Cho parabol (P): y = x^2 và đường thẳng (d): y = x + m − 1. Tìm m để đường thẳng
(d) cắt parabol (P) tại hai điểm phân biệt ở bên trái trục tung.
cho parabol (p):y=x2 và đường thẳng (d):y=mx+m+3. Tìm m để đường thẳng (d) cắt parabol (p) tại 2 điểm phân biệt ở bên phải trục tung
Tìm tham số m để đường thẳng d: y = (m – 2)x + 3m và parabol (P): y = x 2 cắt nhau tại hai điểm phân biệt nằm bên trái trục tung
A. m < 3
B. m > 3
C. m > 2
D. m > 0
Cho đường thẳng d: y = 2x − 5 và parabol (P): y = ( m – 1 ) x 2 (m ≠ 0) . Tìm m để d và (P) cắt nhau tại hai điểm A và B phân biệt và cùng nằm về một phía đối với trục tung.
A. m > 1
B. - 2 3 < m < 1
C. 2 3 < m < 1
D. m < - 2 3
Cho đường thẳng d: y = −3x + 1 và parabol (P): y = m x 2 (m ≠ 0) . Tìm m để d và (P) cắt nhau tại hai điểm A và B phân biệt và cùng nằm về một phía đối với trục tung.
A. m > - 9 4
B. - 9 4 < m < 0
C. m < 0
D. m > 9 4
1.cho parabol (P): y=x2 và đường thẳng (d) y=x+m-1. Tìm m sao cho d cắt (P) tại 2 điểm phân biệt nằm ở bên phải trục tung
2.Lập phương trình bậc hai có 2 nghiệm 2-căn 3 và 2+căn 3