Cho số nguyên tố p=abc
CMR : PT ax2 +bx+c=0 không có nghiệm hữu tỉ.
Cho p= abc (có gạch trên đầu) là một số nguyên tố. Chứng minh rằng phương trình ax^2+ bx+c=0 không có nghiệm hữu tỉ
cho a, b,c là các số nguyên lẻ . Cm :
ax^2 +bx +c = 0 ko có nghiệm hữu tỉ
Chứng minh mọi nghiệm hữu tỉ của pt sau đều nguyên: \(x^3+ax^2+bx-6=0\)
Tìm các giá trị của a,b thoả mãn pt đã cho để có 3 nghiệm hữu tỉ dương pb nhỏ hơn 6
chờ a,b,c là các số nguyên lẻ cm: ax2+ bx + c=0 không có nghiệm là số hữu tỷ
CMR: Nếu a,b,c là các số nguyên lẻ thì phương trình : ax2 + bx + c = 0 không thể có nghiệm là số hữu tỷ
1, Xét pt x2 - m2x + 2m + 2 = 0 (ẩn x). Tìm số nguyên dương m để pt có nghiệm nguyên
2,cho pt x3 + ax2 + bx - 1 = 0
a, tìm các số hữu tỉ a và b để pt có nghiệm \(x=2-\sqrt{3}\)
b, Với a,b vừa tìm đc ở câu a, Gọi x1 ; x2 ; x3 là 3 nghiệm của pt trên
Tính \(S=\frac{1}{x_1^5}+\frac{1}{x_2^5}+\frac{1}{x_3^5}\)
Chứng minh phản chứng: cho a,b,c là các số nguyên. Biết phương trình ax^2+bx+c có nghiệm hữu tỉ. chứng minh rằng trong ba số nguyên a,b,c có ít nhất 1 số chẵn
tìm các gt nguyên của m để pt sau có nghiệm là số hữu tỉ
mx^2 - 2(m-1)x + ( m-4 ) =0