`a.@ P=(x+5)(ax^2 + bx +25)`
`P=ax^3 bx^2 +25x + 5ax^2 + 5bx + 125`
`P=ax^3(b+5a)x^2 +(25+5b)x +125`
`b.`
Ta có :`@ P=Q`
`=>ax^3(b+5a)x^2 +(25+5b)x +125=x^3 +125`
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b+5a=0\\25+5b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-5\end{matrix}\right.\)
`=>` Vậy...
\(a,P=\left(x+5\right)\left(ax^2+bx+25\right)\)
\(=ax^3+bx^2+25x+5ax^2+5bx+125\)
\(=ax^3+\left(5a+b\right)x^2+\left(5b+25\right)x+125\)
\(b,\) Với mọi x thì P = Q \(\Leftrightarrow ax^3+\left(5a+b\right)x^2+\left(5b+25\right)x+125=x^3+125\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\5a+b=0\\5a+25=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-5\end{matrix}\right.\)