\(P=2\Rightarrow8P^2+1=33\left(LHS\right)\)
\(P=3\Rightarrow8P^2+1=73;3P^2+5=32\left(LHS\right)\)
P là số nguyên tố lớn hơn 3 có dạng \(3k+1;3k+2\left(k\inℕ^∗\right)\)
Đến đây làm nốt
\(P=2\Rightarrow8P^2+1=33\left(LHS\right)\)
\(P=3\Rightarrow8P^2+1=73;3P^2+5=32\left(LHS\right)\)
P là số nguyên tố lớn hơn 3 có dạng \(3k+1;3k+2\left(k\inℕ^∗\right)\)
Đến đây làm nốt
CMR:
a) Nếu b là số nguyên tố khác 3 thì A=3n+2+2014b2 là hợp số với mọi số tự nhiên n
b) Nếu p và 8p2+1 là các số nguyên tố thì 8p2+2p+1 là số nguyên tố
c) Nếu k là số tự nhiên lớn hơn 1 thỏa mãn k2+4 và k2+16 là các số nguyên tố thì k chia hết cho 5
Cho a,n đều là số nguyên dương lớn hơn 1, CMR
Nếu an-1 là số nguyên tố thì a=2 và n là số nguyên tố
Nếu an+1 là số nguyên tố thì a chia hết cho2 và n là lũy thừa của 2
Cho p là số nguyên tố > 3 và p + 4 nguyên tố. CMR p + 8 là hợp số
CMR:
a: Nếu p và p2 + 8 là 2 số nguyên tố thi p2 + 2 là số nguyên tố
b: Nếu p va 8p2 + 1 là số nguyên tố thì 2p + 1 là số nguyên tố
Cho 2n-1 là số nguyên tố .Cmr n cũng là số nguyên tố
a)chứng minh rằng nếu p và p^2+8 là các số nguyên tố thì p^2+2 cũng là số nguyên tố
b)Nếu p và 8p^2+1 là các số nguyên tố thì 2p+1 cũng là số nguyên tố
Chứng minh rằng:
a) Nếu p và p^2+8 là các số nguyên tố thì p^2 +2 cũng là số nguyên tố
b) Nếu p vaf8p^2 +1 là các số nguyên tố thì 2p+1 cũng là số nguyên tố
1) Tìm hai số nguyên toó sao cho bình phương của chúng có tổng là 2234.
2) Cho số nguyên dương x. Biết x và 30 là 2 số nguyên tố cùng nhau. CMR: \(x^4-1⋮30\)
3) Cho số nguyên dương x. Biết x và 240 là 2 số nguyên tố cùng nhau. CMR: \(x^4-1⋮240\)
4) Cho các số nguyên a và b thỏa mãn \(a^4+b^4⋮15\). CMR: a, b đều chia hết cho 15
5) Cho các số nguyên dương x, y sao cho \(x^2-xy+y^2⋮9\). CMR: x và y đều chia hết cho 9
Làm được đến đâu thì làm nhé. Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!
chứng minh rằng:
a, nếu p và p^2+8 là số nguyên tố thì p^2+2 cũng là số nguyên tố
b, nếu p và 8p^2+1 là các số nguyên tố thì 2p+1 cũng là số nguyên tố