Số nguyên tố > 3 có dạng : 3k+1 ; 3k+2 ( k ∈ N )
Ta xét trường hợp :
Nếu p = 3k+1 thì p+2 = 3k+1+2 = 3k+3 ⇒ Ta có số có dạng : 3(k+1)
Do 3(k+1) chia hết cho 3
⇒ p có dạng 3k+1 (loại)
⇒ p = 3k+2
Ta lập luận : p+2 = 3k+2+2 = 3k+4 ( là 1 số nguyên tố )
⇒ p+1 = 3k+2+1 = 3k+3 ⇒ Ta có số có dạng : 3(k+1) chia hết cho 3
Ta có : p là 1 số nguyên tố > 3 vì thế hiển nhiên p > 2
Từ đó ta ⇒ rằng : p là 1 số nguyên tố lẻ
⇒ p+1 là 1 số chẵn
⇒ p+1 sẽ chia hết cho 2
Mà p chia hết cho cả 2 và 3
⇒ p ∈ ƯCLN(2;3)
Mà ƯCLN(2;3) là 1 ⇒ p+1 chia hết cho 6(đpcm)