Lời giải:
Nếu $p$ lẻ thì $p+3$ chẵn. Khi đó $p+3$ là nguyên tố khi $p+3=2$
$\Rightarrow p=-1$ (vô lý- loại)
Nếu $p$ chẵn thì $p+10$ chẵn. Khi đó $p+10$ là nguyên tố khi $p+10=2$
$\Rightarrow p=-8$ (vô lý - loại)
Vậy không tồn tại số nguyên tố $p$ thỏa mãn đề.