bài 4 cmr A= p8n+3p4n-4 chia hết cho 5 biết p và 5 là 2 số nguyên tố cùng nhau và p là số nguyên
bài 5 cho p và 2p+1 là 2 số nguyên tố p lớn hơn 3 chứng minh 4p+1 là hợp số
1. C/M phân số tối giản : \(\frac{15n^2+8n+6}{30n^2+21n+13}\)
2. Cho a không chia hết cho 2 và 3. CMR \(4a^2+3a+5\)chia hết cho 6
3. Rìm n sao cho \(n^2+9n-2\)chia hết cho 11
4. CM:a. \(5^n\left(5^4+1\right)-6^n\left(3^n+2^n\right)\)chia hết cho 91
b.\(6^{2n}+19^n-2^{n+1}\)chia hết cho 17
5. Cho 2n + 1 và 3n + 1 là số chính phương. CMR: 5n + 3 là hợp số
6. Tìm n là STN để:
a. n + 11 chia hết cho n + 1
b. \(n^2+n+1\)chia hết cho n + 1
Giả sử n e N* và \(n^2+n+3\)là số ngtố. C/m n chia 3 dư 1 và \(7n^2+6n+2017\) không là số chính phương
chứng minh rằng với p là số nguyên tố lớn hơn 3 ta có 2p-1 chia hết cho 24
Giả sử p là số nguyên tố lẻ
Đặt \(m=\frac{9^p-1}{8}\)
Cmr:m là 1 hợp số lẻ không chia hết cho 3 và \(3^{m-1}\)chia m dư 1
Giả sử p là số nguyên tố lẻ
Đặt \(m=\frac{9^p-1}{8}\)
Cmr:m là hợp số lẻ không chia hết cho 3 và \(3^{m-1}\)chia cho m dư 1
Giúp mk với nha ^^
cho m là số nguyên dương không là bội của 2 và 5. CM: luôn tồn tại một số gồm toàn chữ số 1 chia hết cho m
các bạn giúp mình với, đang chuẩn bị thi cấp 3 nên cần đáp án nhanh càng tôt :))
a,cho 2^m -1 là số nguyên tố . Chứng minh m là số nguyên tố
b,tìm 3 số nguyên tố p,q,r sao cho p+r=2q và hiệu p-q là số tự nhiên không chia hết cho 6.
c, tìm m,n là các số tự nhiên để A là số nguyên tố
A=\(3^{3m^2+6n-61}+4\)
Cho a và b là các số tự nhiên không chia cho 5. Chứng minh rằng \(pa^{4m}+qb^{4m}\)chia hết cho 5 khi và chỉ khi p+q chia hết cho 5 với p; q; m là các số tự nhiên.