Cho hỏi bạn là Đức Trí năm nay lên lớp 9A3 đúng không?
Cho hỏi bạn là Đức Trí năm nay lên lớp 9A3 đúng không?
Cho tam gúac ABC. Gọi P là tâm đường tròn nội tiếp tam giác ABC. Đường thẳng qua P và vuông góc với CP cắt CA, CB lần lượt tại M,N.
a/ C/m: \( \frac{\mathrm AM}{\mathrm BN } = \left(\frac{AP}{BP}\right)^2\)
b/ \(\frac{\mathrm AM}{\mathrm AC } + \frac{\mathrm BN}{\mathrm BC } +\frac{\mathrm CP^2}{\mathrm AB.AC } =1\)
ai đó giúp mình với cảm ơn trước: tam giác ABC; P là giao điểm của 3 đường phân giác trong. đường thẳng qua P vuông góc với CP cắt CA và CB tại M và N.
CM \(\frac{AM}{AC}+\frac{BN}{BC}+\frac{CD^2}{AC-BC}=1\)
Cho tam giác ABC có AC < A. Gọi d1 và d2 lần lượt là các đường phân giác trong và ngoài của góc BAC. Gọi M, N lần lượt là hình chiếu vuông góc của B lên d1 và d2. Gọi P, Q lần lượt là hình chiếu vuông góc của C lên d1 và d2.
a) Chứng minh rằng MN và PQ lần lượt đi qua trung điểm của AB và AC.
b) Chứng minh rằng MN và PQ cắt nhau trên BC.
c) Trên d, lấy các điểm E và F sao cho \(\widehat{BAE}=\widehat{BCA}\) và \(\widehat{ACF}=\widehat{CBA}\) ( E thuộc nửa mặt phẳng bờ AB chứa C; F thuộc nửa mặt phẳng bờ AC chứa B. Chứng minh rằng \(\frac{BE}{CF}=\frac{AB}{AC}\).
d) Các đường thẳng BN và CQ lần lượt cắt AC và AB tại các điểm K và L. Chứng minh rằng các đường thẳng KE và LF cắt nhau trên đường thẳng BC.
Bài 1: cho đường tròn (O;R) có dấy BC cố định. Một điểm A di động trên cung lớn BC. Gọi I là giao điểm 3 đường phân giác trong của tam giác ABC. Các tia AI,BI,CI cắt (O) lần lượt tại điểm thứ hai D,E,F. DE,DF cắt AB,AC theo thứ tự tại M,N. Chứng minh 3 điểm M,I,N thẳng hàng
Bài 2: Cho tam giác ABC nội tiếp đường tròn (O). Tiếp tuyến tại B và C với (O) cắt nhau tại M, đường thẳng AM cắt (O) tại N. Gọi P,Q lần lượt là giao điểm của đường thẳng vuông góc với NC tại C với (O) và BN. AP cắt BC tại E. MO cắt PQ ở D. Chứng minh:
1) tứ giác AMBD nội tiếp
2) Ba điểm M,Q,E thẳng hàng
Cho tg ABC vg tại A, có AB= 27cm, AC=36cm
a) Tính số đo góc nhọn trg tg ABC ( làm tròn tới độ )
b) Vẽ đường thẳng vuông góc vs BC tại B, đg thẳng này cát tia CA tại giao điểm D. Tính AD?
c) Vẽ điểm E đối xứng với A qua đường thẳng BC. Ko tính độ dài đoạn AE, chứng minh \(\frac{1}{AE^2}=\frac{1}{4AB^2}+\frac{1}{4AC^2}\)
d) Trên nửa mặt phẳng có bờ BC ko chứa điểm A, lấy M sao cho tg MBC vg cân tại M. CM AM là tia phân giác của góc BAC
Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn tâm O bán kính R. Vẽ các đường cao AD, BE, CF. Vẽ đường kính AK của đường tròn tâm O.
a) Chứng minh: AB.AC=AD.AK và SABC=\(\frac{AB.BC.CA}{4R}\)
b) Chứng minh OA vuông góc với EF
c) Vẽ đường tròn (I) đi qua B, C và tiếp xúc với AB tại B. Gọi M là giao điểm của cạnh AC với đường tròn (I), N là giao điểm của đường thẳng AD và đường thẳng BK. Chứng minh rằng 4 điểm A, B ,N, M thuộc một đường tròn.
Bài 4:
Cho tam giác ABC vuông tại A, D là một điểm nằm trong tam giác sao cho CD=CA. M là một điểm trên cạnh AB sao cho ˆBDM=\(\frac{1}{2}\)ˆACD. N là giao điểm của MD và đường cao AH củaΔABCΔABC. Chứng minh DM=DN.
Giúp mình !!!!!!!!
1. Tam giác ABC với D,E,F lần lượt thuộc cạnh BC,CA,AB sao cho AD,BE,CF đồng quy tại M. chứng minh \(\frac{DM}{AD}+\frac{FM}{CF}+\frac{EM}{BE}=1\)
2. Tam giác ABC với M tùy ý nằm trong tam giác. Đường thẳng đi qua M và trọng tâm G của tam giác cắt BC,CA,AB lần lượt tại A',B',C'. chứng minh: \(\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}=3\)
3. Tam giác nhọn ABC, phân giác AD. M,N lần lượt là hình chiếu của D trên AC,AB, P là giao điểm BM, CN. chứng minh AP vuông góc BC
1 cho tam giác abc có 3 góc nhọn.kẻ các đường cao AH,BI,CK.Tính tỉ số diện tịhs các tam giác HIK và ABC
2 cho tam giác nhọn abc.Trên các cạnh AB,BC,CA ta lấy theo thứ tự 3 điểm M,N,P sao cho \(\frac{AM}{AM}=\frac{BN}{BC}=\frac{CP}{CA}=\frac{1}{4}\).Gọi S là diện tích tam giác abc, D là giao điểm của AN và CM,E là giao điểm của AN và BP,F là giao điểm của BP và CM.Tính theo S, diện tích của
a)tam giác MNP
b)tam giác DEF
3.cho tam giác nhon abc và 1 điểm thuộc miền trong của tam giác. Gọi D,E,F theo thứ tự là hình chiếu của P trên các cạnh BC,CA,AB
a)chứng minh BD2+DC2=\(\frac{BC^2}{2}\).
b)xác định vị trí điểm P trong tam giác abc để tổng DC2+EA2+FB2 đạt giá trị nhỏ nhất.
cho tam giác nhọn abc.Trên các cạnh AB,BC,CA ta lấy theo thứ tự 3 điểm M,N,P sao cho \(\frac{AM}{AM}=\frac{BN}{BC}=\frac{CP}{CA}=\frac{1}{4}\).Gọi S là diện tích tam giác abc, D là giao điểm của AN và CM,E là giao điểm của AN và BP,F là giao điểm của BP và CM.Tính theo S, diện tích của
a)tam giác MNP
b)tam giác DEF
3.cho tam giác nhon abc và 1 điểm thuộc miền trong của tam giác. Gọi D,E,F theo thứ tự là hình chiếu của P trên các cạnh BC,CA,AB
a)chứng minh BD2+DC2=\(\frac{BC^2}{2}\).
b)xác định vị trí điểm P trong tam giác abc để tổng DC2+EA2+FB2 đạt giá trị nhỏ nhất.