bạn vẽ hình ra
do ÈF là tiếp tuyến nên EF vuông góc AB nên góc BAD =90 \(\Rightarrow\)góc BAD + góc DAF =90 mà góc DAF + góc F = góc ADF=90( ADF chắn nửa đg tròn)
\(\Rightarrow\)góc BAD = góc F
lại có góc BAD = góc BCD( 2 góc nội tiếp cùng chắn cung BD)
góc F = góc BCD
mặt khác góc BCD + góc DCE =180( 2 góc kề bù)
\(\Rightarrow\)góc F + góc DCE =180 \(\Rightarrow\)tg CDFE nội tiếp
b) Aps dụng hệ thức lượng trong \(\Delta BEF\)có BAvuông góc EF ta có \(AB^2=EA\times AF\Rightarrow AB^4=EA^2\times AF^2vàBE\times BF=AB\times EF\)
Tương tự \(\Delta BAE\)có AC vuông góc BE ta có \(EA^2=CE\times BE\)
\(\Delta BAD\)có AD vuông góc BF ta có \(AF^2=DF\times BF\)
TA CÓ \(AB^4=CE\times BE\times DF\times BF=CE\times DF\times AB\times EF\Rightarrow CE\times DF\times EF=AB^3\)
mình chăc chắn câu (B) là CE.DE.EF=AB^3 chứ ko phải là CF đâu ( chăc bạn nhìn nhầm rồi) và mk ms chỉ nghĩ đến câu b thui thông cảm
câu c: \(\Delta BEF\)vuông tại B =>AB2 =AF.AE => EF=AF+AE \(\ge\)2AB => diện tíchBQP = AB.QP.\(\frac{1}{2}\)=AB.FE.\(\frac{1}{4}\)\(\ge\)AB2.\(\frac{1}{4}\)=R2 không đổi.
Dấu "=" xảy ra \(\Leftrightarrow\)\(\Delta BEF\)vuông cân\(\Leftrightarrow\)AB\(\perp\)CD