Cho (O;R), AB là dây. Dây CD vuông góc với AB tại I (IA < IB). Kẻ đường kính CE. a) Tứ giác ABED là hình gì, vì sao? b) H là chân đường vuông góc kẻ từ O đến BC. Chứng minh AD= 20H . c) Chứng minh AD² + BC² không đổi. d) M là trung điểm của AD. Chứng minh MI song song với OH. (HD: Đồng vị, hình thang cân)
Vì CE là đường kính của (O)→DE⊥DC→DE//AB(CD⊥AB)
→\(\widehat{DAB}=180^o-\widehat{ADE}=\widehat{ABE}\)
→DBED là hình thang cân
Ta có: O,H là trung điểm CE,CB→OH là đường trung bình ΔCBE
→BE=2OH→AD=2OH vì ABED là hình thang cân
Vì CECE là đường kính →BC⊥BE
→\(AD^2+BC^2=BE^2+BC^2=CE^2=4R^2\)
Gọi MI∩BC=F. Vì CD⊥AB=I, M là trung điểm AD
→\(\widehat{CIF}=\widehat{MID}=\widehat{MDI}=\widehat{ADI}=\widehat{IBC}\)
→IF⊥BC
Lại có OH⊥BC→OH//MI (đpcm)
Nguồn: hangbich