1 .
Cho đường tròn (O;13 cm) , dây AB=24cm
a) Tính khoảng cách từ tâm O đến dây AB?
b) Gọi M là điểm thuộc dây AB. Qua M, vẽ dây CD vuông góc với dây AB tại điểm M. Xác định vị trí điểm M trên dây AB để AB=CD
2 .
Cho đường tròn (O) và 2 điểm A,B phân biệt thuộc (O) sao cho đường thẳng AB không đi qua tâm O trên tia đối của tia AB lấy điểm M khác điểm A, từ điểm M kẻ 2 tiếp tuyến phân biệt M E ,MF với đường tròn .GỌI H là trung điểm của dây cung AB , các điểm K và I theo thứ tự là giao điểm của đường thẳng EF với các đường thẳng OM
1 cm m,o,h,e,f cùng nằm trên 1 đường tròn
2 oh .oi=ok.om
3Cm IA,IB là các tiếp tuyến của đường tròn
1, Cho nửa đường tròn (O) đường kính AB=2R .Từ 1 điểm M trên tiếp tuyển tại điểm A vẽ tiếp tuyến thứ 2 MC vs nửa đường tròn .vẽ CH ⊥⊥ AB ,CH cắt MB tại I CHỨNG MINH
a, OM ⊥⊥ AC
b, Gọi K là giao điểm của OM và AC .CM rằng OK ×× OM không đổi
c, so sánh IH và IC
2, Cho đường tròn (O) bán kính R với R=5 cm và P là điểm ở bên trong đường tròn 2 dây AB và CD của đường tròn cắt nhau tại P bt AB=8cm
a, tính khoảng cách từ O đến dây AB
b, Biết khoảng cách từ O đến dây CD=3cm tứ giác ACDB là hình gì vì sao
Giải giúp mình các câu này với ạ!
1) Cho đường tròn tâm O có 2 dây AB và CD. Gọi H và K là khoảng cách từ tâm O đến dây AB và CD. CM : Nếu AB = CD thì AH = AK và OH = OK.
2) Cho đường tròn tâm O, đường kính BC. Lấy điểm A thuộc đường tròn, vẽ AH vuông góc BC tại H với H nằm giữa O và B. Vẽ thêm đường kính AD.
a) CM : AB.AC = AH.AD
b) CM : góc CAH = góc BAD
Bài 1:
Cho (O;R), và một điểm M nằm ngoài đường tròn (O) sao cho OM = 2R. Từ M vẽ tiếp
tuyến MA của đường tròn (O) (A là tiếp điểm)
a) Tính độ dài AM theo R
b) Từ A kẻ dây cung AB vuông góc với OM tại H. Chứng minh MB là tiếp tuyến của
đường tròn (O)
(vẽ hình)
1 . Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Ba đường cao BD;
CE và AF của tam giác ABC cắt nhau tại điểm H. Chứng minh rằng:
1) Góc DEC = Góc DBC.
2) CE.HC + BD.HB = BC 2
3) Đường thẳng DE vuông góc OA
2 ,.
Cho đường tròn (O;13 cm) , dây AB=24cm
a) Tính khoảng cách từ tâm O đến dây AB?
b) Gọi M là điểm thuộc dây AB. Qua M, vẽ dây CD vuông góc với dây AB tại điểm M. Xác định vị trí điểm M trên dây AB để AB=CD
Cho (O;R) với dây AB cố định sao cho khoảng cách từ O tới AB bằng R/2. Gọi H là trung điểm của AB, tia HO cắt đường tròn (O;R) tại C. Trên cung nhỏ AB lấy điểm M tùy ý (M khác A, B). Đường thẳng qua A và song song với MB cắt CM tại I. Dây Cm cắt Ab tại K
1. So sánh góc AIM vs góc ACB
2. cm 1/MA + 1/MB = 1/MK
3. Gọi R1 R2 lần lượt là bán kính đường tròn ngoại tiếp tam giác MAK và tam giác MBK, hãy xác định vị trí của điểm M trên cung nhỏ Ab để thích R1xR2 đạt giá trị lớn nhất
Cho đường tròn (O;R) và đường thẳng d không có điểm chung sao cho khoảng cách từ O đến d không quá 2R. Qua M trên d vẽ tiếp tuyến MA, MB tới (O) (A, B là tiếp điểm). gọi H là hình chiếu vuông góc của O trên d. dây AB cắt OH ở K và cắt OM tại I, tia OM cắt (O) tại E
a) c/m OM vuông góc AB và OI.OM=R^2
b) c/m OK.OH=OI.OM
c) tìm vị trí của M trên d để OAEB là hình thoi
Cho đường tròn (O; R) và đường thẳng d không có điểm chung sao cho khoảng cách từ O đến d không quá 2R. Qua diêm M trên d, vẽ các tiếp tuyến MA, MB tới (O) với A, B là các tiếp điểm. Gọi H là hình chiếu vuông góc của O trên d. Vẽ Dây AB cắt OH ở K và cắt OM tại I. Tia OM cắt (O) tại E.
a, Chứng minh OM ⊥ AB và OI.OM = R 2
b, Chứng minh OK.OH = OI.OM
c, Tìm vị trí của M trên d để OAEB là hình thoi
d, Khi M di chuyên trên d, chứng minh đường thẳng AB luôn đi qua một điểm cố định
Cho điểm A di chuyển trên đường thẳng d không cắt đường tròn (O;r). Từ A kẻ các tiếp tuyến AB và AC đến đường tròn (B,C là các tiếp điểm). CMR: đường thẳng BC đi qua một điểm cố định M và tính khoảng cách OM cho biết h là khoảng cách từ O đến đường thẳng d.