Xét `2 triangle MBC` và `triangle MDA`.
`hatM` chung
`hat(ABC) = hat(MDA)` vì cùng chắn cung `AC`.
`=> triangle MBC = triangle MDA (g-g)`.
`-> (MB)/(MC) = (MD)/(MA).`
`=> MA . MB = MC . MD`.
Xét `2 triangle MBC` và `triangle MDA`.
`hatM` chung
`hat(ABC) = hat(MDA)` vì cùng chắn cung `AC`.
`=> triangle MBC = triangle MDA (g-g)`.
`-> (MB)/(MC) = (MD)/(MA).`
`=> MA . MB = MC . MD`.
cho (O) và 1 điểm M cố định không nằm trên đường tròn. qua m kẻ 2 đường thẳng, đường thẳng thứ nhất cắt đường tròn (O) tại A và B, đường thẳng thứ hai cắt đưởng tròn(O) tại C và D
CMR: MA.MB=MC.MD
( mọi người giúp tôi nhé. yêu mọi người! ) ^-^....^-^
Cho đường tròn (O) và một điểm M cố định không nằm trên đường tròn. Qua M kẻ hai đường thẳng . Đường thẳng thứ nhất cắt (O) tại A và B. Đường thẳng thứ hai cắt (O) tại C và D. Chứng minh MA.MB = MC.MD.
Hướng dẫn: Xét cả hai trường hợp điểm M nằm bên trong và bên ngoài đường tròn. Trong mỗi trường hợp, xét hai tam giác đồng dạng.
Cho đường tròn (O) và một điểm M cố định không nằm trên đường tròn. Qua M kẻ hai đường thẳng . Đường thẳng thứ nhất cắt (O) tại A và B. Đường thẳng thứ hai cắt (O) tại C và D. Chứng minh MA.MB = MC.MD.
Hướng dẫn: Xét cả hai trường hợp điểm M nằm bên trong và bên ngoài đường tròn. Trong mỗi trường hợp, xét hai tam giác đồng dạng.
Cho (O) và một điểm M nằm ngoài đường tròn. Qua M kẻ hai đường thẳng, một đường cắt (O) tại A,B; đường còn lại cắt (O) tại C,D. c/m MA.MB=MC.MD
a) Từ một điểm M ở bên ngoài đường tròn \(\left(O;R\right)\)kẻ tiếp tuyến MT và hai cát tuyến MAB và MCD với đường tròn (O) \(\left(A,B,C,D\in\left(O\right)\right)\). Chứng minh \(MA.MB=MC.MD=MT^2=OM^2-R^2\)
b) Qua điểm M ở bên trong đường tròn \(\left(O;R\right)\)kẻ hai dây cung AB và CD của đường tròn (O) \(\left(A,B,C,D\in\left(O\right)\right).\)Chứng minh\(MA.MB=MC.MD=R^2-OM^2\)
Từ điểm P bên ngoài đường tròn , kẻ 2 tiếp tuyến PA , PB đến (O) . Đường thẳng // PA kẻ từ B cắt (O) tại C , PC cắt đường tròn (O) tại điểm thứ 2 là E . Đường BE cắt PA tại M
a ) Chứng minh : PM^2 = BM . ME
b ) CMR : M là trung điểm PA
Cho 3 điểm A,B,C theo thứ tự nằm trên một đường thẳng.Vẽ đường tròn (O;R) có đường kính BC.Từ A kẻ tiếp tuyến AM với đường tròn (O),(M là tiếp điểm).Tiếp tuyến tại B của đường tròn(O) cắt AM tại D.Từ O kẻ đường thẳng vuông góc với OD cắt đường thẳng AM ở E. CMR :
1.MD.ME=R^2
2 EC là tiếp tuyến của đường tròn (O)
Cho 2 đường tròn (O) và (O') tiếp xúc ngoài ở A. Một cát tuyến kẻ qua A cắt (O) ở B; cắt (O') ở C. Kẻ đường kính BD và CE của (O) và (O').
a) Chứng minh: D, A, E thẳng hàng
b) Chứng minh: BD song song CE
c) Nếu đường tròn (O) bằng đường tròn (O') thì thứ giác BDCE là hình gì? Vì sao?
CÁC BẠN LÀM GIÚP MÌNH NHA! CẢM ƠN CÁC BẠN!
a) Từ điểm A nằm ngoài đtròn (O), kẻ cắc tiếp tuyến AB, AC với đtròn. Đường thẳng đi qua O và song song AB cắt AC ở D. Đường thẳng qua O và song song AC cắt AB ở E. Tứ giác ADOE là hình gì ?
b) Cho đường tròn (O) và đtròn (O') tiếp xúc ngoài tại A. Qua A kẻ đường thẳng bất kì cắt (O) tại C, cắt (O') tại D. Cm: OC // O'D.
c) Cho đtròn (O) và đtròn (O') cắt nhau tại 2 điểm A,B. Kẻ đường kính AC của đtròn (O) và đường kính AD của đtròn (O'). Cm:
1] CB // OO'.
2] Ba điểm B, C, D thẳng hàng.