Chương II - Đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyen Quang

Cho (O, R) và M nằm ngoài đường tròn (0) sao cho OM = 2R. Kẻ MA, MB là hai tiếp tuyến với (O) ( A, B là tiếp điểm). Gọi H là giao điểm của OM với AB. 1) Chứng minh: OM vuông góc AB tại H. 2) Chứng minh: MH • MO = 3R^2 3) Chứng minh: tam giác MAB là tam giác đều. 4) MO cắt (O) lần lượt tại I và K (I nằm giữa M và K ). Chứng minh: AI là phân giác của MAH và MH • MO = MI • MK.

Nguyễn Lê Phước Thịnh
14 tháng 12 2023 lúc 19:43

1: Xét (O) có

MA,MB là các tiếp tuyến

Do đó:MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB tại H và H là trung điểm của AB

2: Ta có: ΔOAM vuông tại A

=>\(AO^2+AM^2=OM^2\)

=>\(AM^2=\left(2R\right)^2-R^2=3R^2\)

Xét ΔAMO vuông tại A có AH là đường cao

nên \(MH\cdot MO=MA^2\)

=>\(MH\cdot MO=3R^2\)

3:

Xét ΔOAM vuông tại A có \(sinAMO=\dfrac{OA}{OM}=\dfrac{1}{2}\)

nên \(\widehat{AMO}=30^0\)

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MO là phân giác của góc AMB

=>\(\widehat{AMB}=2\cdot\widehat{AMO}=2\cdot30^0=60^0\)

Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)

nên ΔMAB đều

4: Xét (O) có

\(\widehat{MAI}\) là góc tạo bởi tiếp tuyến AM và dây cung AI

\(\widehat{IKA}\) là góc nội tiếp chắn cung AI

Do đó: \(\widehat{MAI}=\widehat{IKA}\)

Xét ΔMAI và ΔMKA có

\(\widehat{MAI}=\widehat{MKA}\)

\(\widehat{AMI}\) chung

Do đó: ΔMAI đồng dạng với ΔMKA

=>\(\dfrac{MA}{MK}=\dfrac{MI}{MA}\)

=>\(MA^2=MI\cdot MK\)

mà \(MA^2=MH\cdot MO\)

nên \(MI\cdot MK=MH\cdot MO\)

Ta có: \(\widehat{MAI}+\widehat{OAI}=\widehat{OAM}=90^0\)

\(\widehat{HAI}+\widehat{OIA}=90^0\)(ΔAHI vuông tại H)

mà \(\widehat{OAI}=\widehat{OIA}\)(ΔOAI cân tại O)

nên \(\widehat{MAI}=\widehat{HAI}\)

=>AI là phân giác của góc MAH


Các câu hỏi tương tự
39 Trà My
Xem chi tiết
Lăng
Xem chi tiết
Mai Nam
Xem chi tiết
Trần Thị Phương Kim
Xem chi tiết
Nguyễn Địch Nhật Minh
Xem chi tiết
bảo ngọc
Xem chi tiết
Hùng Trần Phi
Xem chi tiết
Một chút tương tư
Xem chi tiết
Khang Lý
Xem chi tiết