Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho (O; R) đường kính AB và điểm C thuộc đường tròn. Gọi M và N là điểm chính giữa các cung nhỏ AC và BC Nối MN cắt AC tại I. Hạ ND vuông góc AC. Gọi E là trung điểm của BC. Dựng hình bình hành ADEF.
Tính góc MIC ?
chứng minh Dn là tiếp tuyến (O)
chứng minh F thuộc (O;R)
cho góc CAB bằng 30 độ R=10cm tính thể tích hình tạo thành khi cho tam giác ABC quay 1 vòng quanh AB
câu 1 :
Từ một điểm A ở bên ngoài đường tròn (O), vẽ tiếp tuyến AB và cát tuyến ACD với đường tròn (B là tiếp điểm, C nằm giữa A và D). Tia phân giác của góc CBD cắt đường tròn tại M, cắt CD tại E và cắt tia phân giác của góc BAC tại H. CMR:
a, AH ⊥ BE
câu 2 :
Cho (O; R) đường kính AB và điểm C thuộc đường tròn. Gọi M và N là điểm chính giữa các cung nhỏ AC và BC Nối MN cắt AC tại I. Hạ ND vuông góc AC. Gọi E là trung điểm của BC. Dựng hình bình hành ADEF.
a) tính góc MIC
b)DN là tiếp tuyến của (O;R)
c)F thuộc (O)
Cho nửa đường tròn (O;R) đường kính AB và điểm C thuộc nửa đường tròn sao cho cung AC bằng hai lần cung CB. Gọi M và N là điểm chính giữa các cung AC và BC. Nối MN cắt AC tại I. Hạ ND vuông góc với AC, CB cắt NO tại E.
a, Tính góc MIC;
b) Chứng minh DN là tiếp tuyến của (O; R)
c) Cho R = 5cm. Tính độ dài cung CB và diện tích hình quạt OCB.
Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.
a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp
b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN
Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.
a) C/m: MOCD là hình bình hành
b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.
Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).
a) C/m: MI là tiếp tuyến của (O)
b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.
Cho đường tròn (O;R) đường kính AB. Gọi Ax và By là hai tiếp tuyến của (O); C là một điểm trên đường tròn (O), D là điểm nằm giữa A và O. Đường vuông góc với CD tại C cắt Ax và By lần lượt tại E và F.
a. Chứng minh: Tứ giác AECD nội tiếp.
b. Gọi M là giao điểm của AC và DE, N là giao điểm của BC và DF. Chứng minh: MN song song với AB.
c. Tính tổng diện tích hai hình viên phân giới hạn bởi các cung nhỏ AC và BC với các dây AC và BC của (O) khi AC=R?
Cho đtròn (O;R) đường kính AB. Gọi A là điểm chính giữa cung BC. Điểm M thuộc đoạn BC. Kẻ ME vuông góc với AB; MF vuông góc với AC; MN vuông góc với EF tại N.
Chứng minh 5 điểm A,E,O,M,F thuộc một đường tròn.
Chứng minh: BE.BA = BO.BM
Tiếp tuyến của đường tròn (O;R) tại A cắt MF tại K. Chứng minh BE = KF
Khi M chuyển động trên BC chứng minh rằng MN luôn đi qua một điểm cố định.
Cho đtròn (O;R) đường kính BC. Gọi A là điểm chính giữa cung BC. Điểm M thuộc đoạn BC. Kẻ ME vuông góc với AB; MF vuông góc với AC; MN vuông góc với EF tại N.
Chứng minh 5 điểm A,E,O,M,F thuộc một đường tròn.
Chứng minh: BE.BA = BO.BM
Tiếp tuyến của đường tròn (O;R) tại A cắt MF tại K. Chứng minh BE = KF
Khi M chuyển động trên BC chứng minh rằng MN luôn đi qua một điểm cố định.
Cho đtròn (O;R) đường kính BC. Gọi A là điểm chính giữa cung BC. Điểm M thuộc đoạn BC. Kẻ ME vuông góc với AB; MF vuông góc với AC; MN vuông góc với EF tại N.
Chứng minh 5 điểm A,E,O,M,F thuộc một đường tròn.
Chứng minh: BE.BA = BO.BM
Tiếp tuyến của đường tròn (O;R) tại A cắt MF tại K. Chứng minh BE = KF
Khi M chuyển động trên BC chứng minh rằng MN luôn đi qua một điểm cố định.
Cho đường tròn (O; R). Điểm M ở bên ngoài đường tròn sao cho OM= 2R. Kẻ hai tiếp tuyến MA, MB tời đường tròn (A;B là các tiếp điểm). Nối OM cắt AB tại H. Hạ HD vuông góc MA tại D. Điểm C thuộc cung nhỏ AB. Tiếp tuyến tại C của đường tròn (O;R) cắt MA, MB lần lượt tại E và F. Đường tròn đường kính BM cắt BD tại I. Gọi K là trung điểm của OA. Chứng minh ba điểm M, I, K thẳng hàng