Cho o là trung điểm của đoạn AB. Trên cùng môtj nửa mặt phẳng có bờ là cạnh AB vẽ tia Ax, By cùng vuông góc với Ab. TRên tia Ax lấy C( khác A), qua o kẻ đường thawnggr vuông góc với OC cắt By tại D.
a. CM: (AB)^2= 4AC.BD
Cho o là trung điểm của đoạn AB. Trên cùng môtj nửa mặt phẳng có bờ là cạnh AB vẽ tia Ax, By cùng vuông góc với Ab. TRên tia Ax lấy C( khác A), qua o kẻ đường thawnggr vuông góc với OC cắt By tại D.
a. CM: (AB)^2= 4AC.BD
Cho o là trung điểm của đoạn AB. Trên cùng môtj nửa mặt phẳng có bờ là cạnh AB vẽ tia Ax, By cùng vuông góc với Ab. TRên tia Ax lấy C( khác A), qua o kẻ đường thawnggr vuông góc với OC cắt By tại D.
a. CM: (AB)^2= 4AC.BD
Cho O là trung điểm của đoạn AB. Trên cùng một nửa mặt phẳng có bờ là cạnh AB vẽ tia Ax, By cùng vuông góc với AB. Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vuông góc với OC cắt tia By tại D.
a) Chứng minh AB2=4.AC.BD
b) Kẻ OM vuông góc với CD tại M. Chứng minh AC=CM
c) Từ M kẻ MH vuông góc AB tại H. Chứng minh BC đi qua trung điểm MH
d) Tìm vị trí của C trên tia Ax để diện tích tứ giác ABDC nhỏ nhất
Cho đoạn thẳng AB, O là trung điểm của AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tia Ax và By vuông góc với AB. Gọi C là một điểm thuộc tia Ax. Đường vuông góc với OC tại O cắt tia By ở D.kẻ om vuông góc với cd tại m cminh OM^2=AC*BD
Cho nửa đường tròn (O), đường kính AB. TừA và B kẻ hai tia Ax và By vuông góc với AB ( Ax, By cùng nằm trên nửa mặt phẳng với nửa đường tròn bờ là AB). Trên nửa đường tròn lấy điểm M bất kỳ, tiếp tuyến với nửa đường tròn cắt Ax, By lần lượt tại C và D.
a) Chứng minh góc COD vuông.
b) Chứng minh CD = AC + BD.
c) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.
d) Gọi I là giao điểm của AD và BC. Chứng minh MI ⊥ AB.
Cho nửa đường tròn tâm O đường kính AB. Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Gọi C là 1 điểm bất kì trên nửa đường tròn ( C khác A,B ). qua C kẻ tiếp tuyến với nửa đường tròn cắt Ax, By tại M,N a. Tính MON b. Chứng minh rằng MN = AM + BN c. Chứng minh rằng AM.BN = R2
Cho đoạn thẳng AB ; O là trung điểm AB trên nửa mặt phẳng bờ là AB, kẻ Ax; By vuông góc với AB . Vẽ 1 góc vuông tại O có 2 cạnh cắt Ax,By lần lượt tại C;D. Gọi C' là giao điểm của tia CO với tia đối của tia By
a)Cm tam giácC'DC cân
b)Cm đường thẳng CD là tiếp tuyến của đường tròn đường kính AB
c) Đường tròn ngoại tiếp tam giác CDO luôn tiếp xúc với 1 đường thẳng cố định khi góc vuông tại O thay đổi
Trên nửa đường tròn tâm 0 đường kính AB. Vẽ 2 tia tiếp tuyến Ax, By (2 tia nằm cùng nửa mặt phẳng với nửa (O)). Gọi M là điểm tùy ý trên nửa đường tròn (M khác A, B). Tiếp tuyến tại M của nửa (O) cắt tia By tại D. Tia BM cắt tia Ax. CM AD vuông góc OC
Cho đoạn AB và điểm M nằm giữa A và B. Trên nửa mặt phẳng có bờ là đường thẳng AB. Kẻ 2 tia Ax và By cùng vuông góc với AB. Trên tia Ax lấy điểm E. Tia vuông góc với ME tại C cắt tia By tại F. Đường tròn đường kính EC cắt EF ở N.
1) CM: MNFB nội tiếp đường tròn
2) CM: AE. BF= AM. MB
3) CM: tam giác ABN vuông
Cho nửa đường tròn (O) đường kính AB. Gọi Ax; By là các tia vuông góc với AB.(Ax ; By và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB).Qua điểm M thuộc nửa đường tròn ( M khác A và B), kẻ tiếp tuyến với nửa đường tròn, nó cắt Ax tại C và cắt By tại D
A) c/m CD=AC+BD và COD = 90
B) AD cắt BC tại N. Chứng minh: MN//BD
C) Gọi H là trung điểm của AM. Chứng minh: ba điểm O, H , C thẳng hàng
giúp tớ câu b và c thôi ạ