Cho (O) đường kính AC, trên đoạn OC lấy điểm B và vẽ đường tròn tâm O', đường kính BC. Gọi M là trung điểm của đoạn AB. Từ M vẽ dây cung DE vuông góc với AB, DC cắt đường tròn tâm O' tại I
a) Tứ giác ADBE là hình gì ?
b) Chứng minh DMBI nội tiếp
c) Chứng minh B, I, C thẳng hàng và MI = MD
d) Chứng minh MC.DB = MI. DC
e) Chứng minh MI là tiếp tuyến của (O')
Vì em là học sinh lớp 9 nên cô chỉ hưỡng dẫn thôi nhé :) Cố gắng thi tốt nhé :)
a. ADBE là hình thoi vì có hai đường chéo vuông góc và cắt nhay tại trung điểm mỗi đường.
b. Tứ giác DMBI có góc DMB + góc DIB = 180 độ nên nó là tứ giác nội tiếp.
c. Cô nghĩa là chứng minh B, I, E thẳng hàng ms đúng, em xem lại xem.
Ta có: \(\widehat{MIE}=\widehat{MDB}=\widehat{MEB}\) suy ra tam gaisc MIE cân tại M hay MI = ME. Lại có ME = MD nên MD = MI.
d.Hệ thức có được là do \(\Delta BDC\sim\Delta IMC\left(g-g\right)\)
e. Ta chứng minh \(\widehat{O'IC}=\widehat{MIB}\)
Thật vậy, \(\widehat{O'IC}=\widehat{O'CI}=\widehat{DEA}=\widehat{MDO}=\widehat{MIB}\).
Khi đó \(90^0=\widehat{O'IC}+\widehat{O'IB}=\widehat{MIB}+\widehat{O'IB}\)
Vậy MI vuông góc O'I hay MI là tiếp tuyến (O')