a, bạn tự vẽ
b, AB là đường kính; I thuộc (O)
=> ^AIB = 900 ( điểm thuộc đường tròn nhìn đường kính )
hay tam giác AIB vuông tại I
a, bạn tự vẽ
b, AB là đường kính; I thuộc (O)
=> ^AIB = 900 ( điểm thuộc đường tròn nhìn đường kính )
hay tam giác AIB vuông tại I
Các bạn giúp mình tí.
Cho M là 1 điểm chuyển động trên nửa ( O ; đường kính AB ). Gọi E là điểm chính giữa của cung AM. Tia BM cắt tia t2 Ax của nửa ( O ) tại N, cắt tia AE tại I, BE cắt Ax tại F.
A, Chứng minh ∆ABI cân tại B
B, AM cắt BE tại K. C/m : KI vuông góc AB và IA * IE =IB*IM
C, C/m: tứ giác AFIK là hình thoi
D, xã định vị trí của M trên nửa ( O) để tứ giác AKIN nội tiếp
cho đường tròn tâm O bán kính R và dây AB cố định (AB<2R). Gọi I là điểm chính giữa cung lớn AB, K là trung điểm dây AB, M là điểm bất kì trên cung nhỏ BI (M khác B,I). Qua A kẻ đường vuông góc với MI tại H cắt tia BM tại C. Tìm vị trí điểm M để chu vi tam giác AMC lớn nhất
Cho đường tròn (O;R) đường kính AB. Lấy M bất kì trên cung AB sao cho AM > BM.
a) Chứng minh tam giác AMB vuông.
b) Tia tiếp tuyến Ax của (O) tại A cắt BM tại C.Tiếp tuyến tại M của (O) cắt tia Ax tại I. Chứng
minh IA=IC.
c) Kẻ MH⊥ AB(H AB). Gọi K là trung điểm của MH. Chứng minh B,K,I thẳng hàng.
d) Tia AK cắt IM tại D. Chứng minh BD là tiếp tuyến của (O).
cho đường tròn tâm O đường kính Ab. O lad điểm chính giữa cung AB. GỌi M là điểm bất kì trên cung BC, dây Am cắt OC tại E. Chứng minh rằng tâm I của đường tròn ngoại tiếp tam giác OEM luôn thuộc 1 đoạn thẳng cố định
Cho (O) đường kính AB. M nằm chính giữa cung AB. Lấy N bất kì thuộc cung AM. AM cắt BN tại H, AN cắt BM tại C. Gọi hình chiếu vuông góc của H trên AB là K. MK cắt BN tại I. Chứng minh: a, C,H, K thẳng hàng. b, NK đi qua một điểm cố định. c, AH.AM + BH.BN không đổi. d, IH.BN=NH.IB Cho (O) đường kính AB. M nằm chính giữa cung AB. Lấy N bất kì thuộc cung AM. AM cắt BN tại H, AN cắt BM tại C. Gọi hình chiếu vuông góc của H trên AB là K. MK cắt BN tại I. Chứng minh:
a, C,H, K thẳng hàng
b, NK đi qua một điểm cố định
c, AH.AM + BH.BN không đổi
d, IH.BN=NH.IB
cho đường tròn (o) đường kính AB, gọi C là 1 điểm bất kì trên đường tròn (o) sao cho CA>CB. Vẽ hình vuông ACDE có đỉnh D nằm trên tia đối tia BC, đường chéo CE cắt đường tròn tại F. cmr
a. F là điểm chính giữa cung AB
b. Tam giác ABF vuông cân
c. Tia DE cắt tia BF tại M. Cm 4 điểm A,B,D,M cùng thuộc một đường tròn từ đó suy ra AM là tiếp tuyến của (o)
Cho nửa đường tròn (O; R) đường kính AB. Điểm M thuộc nửa đường tròn. Gọi H là điểm chính giữa cung AM. Tia BH cắt AM tại I. Tiếp tuyến của nửa đường tròn tại A cắt BH tại K. Nối AH cắt BM tại E.
1. Chứng minh tam giác BAE là tam giác cân;
2. Chứng minh KH.KB=KE2;
3. Đường tròn tâm B, bán kính BA cắt AM tại N. Chứng minh tứ giác BIEN nội tiếp.
cho nửa đường tròn (o) đướng kính AB=2R và dây cung AC=R. gọi K là trung điểm của dây cung CB, qua B dựng tiếp tuyến Bx với (O) cắt tia OK tại D.
a, CMR Δ∆ABC vuông.
b, CMR DC là tiếp tuyến của đường tròn (O).
c, tia OD cắt (O) tại M. CM tứ giác OBMC là hình thoi.
d, vẽ CH vuông góc vs AB tại H và gọi I là trung điểm của cạnh CH. tiếp tuyến tại A của đường tròn (O) cắt tia BI tại E.CMR E,C,D thẳng hàng
a) tam giác ABE cân
b) KH.KB = KE bình
c) Đường tròn (B) bán kính BA cắt AM tại N. C/m tứ giác BIEN nội tiếp