Cho nửa đường tròn tâm O, đường kính AB=2R, tiếp tuyến Ax,By với nửa đường tròn tâm O ( Ax, By nằm cùng phía với nửa đường tròn đó). Tiếp tuyến tại M với đường tròn tâm O ( M khác A,B) cắt Ax, By lần lượt tại C, D.
a) Chứng minh: A,C,O,M thuộc 1 đường tròn ( mik làm được rồi)
b) Chứng minh: Góc COD = 90 độ, và AC.BD = R^2
c) Gọi N là giao điểm AD và BC. Tia MN cắt AB tại H. Chứng minh N là trung điểm của HM
d) Cho S tứ giác ABCD= 20 cm^2 , Ab = 5cm. Tính diện tích tam giác ANB
c) Gọi giao điểm của BM với Ax là I. Từ M kẻ MK vuông góc với AB. BC cắt MK tại E.
Vì MK vuông góc AB => MK // AC // BD
EK // AC => \(\frac{EK}{AC}=\frac{BE}{BC}\); ME // IC => \(\frac{ME}{IC}=\frac{BE}{BC}\) => \(\frac{EK}{AC}=\frac{ME}{IC}\)
Tam giác MIA vuông tại M có CA = CM => góc CAM = góc CMA => góc CIM = góc CMI => tam giác CMI cân tại C => CI = CM => CM = CI = CA => EK = ME.
\(EK=ME\Rightarrow\frac{EK}{BD}=\frac{ME}{BD}\)mà \(\frac{ME}{BD}=\frac{CM}{CD}=\frac{AK}{AB}\Rightarrow\frac{EK}{BD}=\frac{AK}{AB}\)
=> Tam giác AKE đồng dạng với tam giác ABD (c.g.c) => góc EAK = góc DAK => A,E,D thẳng hàng => BC cắt AD tại E mà theo giả thiết BC cắt AD tại N => E trùng với N => H trùng với K => N là trung điểm MH.