Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho nửa đường tròn tâm O, đường kính AB. Qua điểm C thuộc nửa đường tròn kẻ tiếp tuyến d của đường tròn. Gọi E và F lần lượt là chân các đường vuông góc kẻ từ A và B đến d. Gọi H là chân đường vuông góc kẻ từ C đến AB. Chứng minh rằng :  C H 2 = AE.BF

Cao Minh Tâm
28 tháng 12 2017 lúc 4:52

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác ABC nội tiếp trong đường tròn (O) có AB là đường kính nên góc (ACB) = 90 °

Tam giác ABC vuông tại C có CH ⊥ AB

Theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có:

C H 2 = HA.HB     (3)

Xét hai tam giác ACH và ACE, ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

CH = CE (tính chất đường phân giác)

AC chung

Suy ra : ∆ ACH =  ∆ ACE (cạnh huyền, cạnh góc vuông)

Suy ra: AH = AE     (4)

Xét hai tam giác BCH và BCF, ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

CH = CF (= CE)

BC chung

Suy ra:  ∆ BCH =  ∆ BCF (cạnh huyền, cạnh góc vuông)

Suy ra: BH = BF     (5)

Từ (3), (4) và (5) suy ra:  C H 2  = AE.BF


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nguyễn Đức An
Xem chi tiết
admin tvv
Xem chi tiết
admin tvv
Xem chi tiết
thanhthanh1977 vu
Xem chi tiết
Linh Trịnh (G)
Xem chi tiết
trần thị kim uyên
Xem chi tiết
Phạm Huệ Anh
Xem chi tiết