Cho nửa đường tròn tâm O đường kính AB = 2R. Trên nửa đường tròn lấy điểm C (C khác A và B). Gọi D là giao điểm của đường thẳng BC với tiếp tuyến tại A của nửa đường tròn tâm O và I là trung điểm của AD a. Chứng minh BC.BD = 4R² b. Chứng minh IC là tiếp tuyến của nửa đường tròn tâm O c. Từ C kẻ CH vuông góc với AB (H thuộc AB) BI cắt CH tại K. Chứng minh K là trung điểm của CH.
cho nửa đường tròn tâm o đường kính AB. gọi Ax và By là 2 tiếp tuyến tại A và B của đườg tròn tâm o . Qua điểm M thuộc nửa đường tròn kẻ tia tiếp tuyến với nửa đường tròn, nó cắt Ax và By theo thứ tự là C và D.
a) CM. góc COD= 9Oo
b) Gọi e là tâm của đường tròn đường kính CD. CMR AB là tiếp tuyến của đường tròn tâm E
c) Gọi N là giao điểm của AD và BC. CM MN vuông AB
Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC (C là tiếp điểm). Hạ CH vuông góc với AB, đường thẳng MB cắt đường tròn (O) tại Q và cắt CH tại N. Gọi giao điểm của MO và AC là I. Chứng minh rằng: a) Tứ giác AMQI nội tiếp; b) Góc AQI = ACO; c) CN = NH d)tia AN cắt MC tại E. CM tứ giác COBE nội tiếp
Cho nửa đường tròn tâm O đường kính AB.Lấy điểm M thuộc đoạn thẳng OA,điểm N thuộc nửa đường tròn tâm O.Từ A và B vẽ các tiếp tuyến Ax và By.Dường thảng qua N va vuông góc với NM cắt Ax,By thứ tự tại C và D
a)Chứng minh ACNM và BDNM là các tứ giác nội tiếp đường tròn
b)Chứng minh tam giác ANB đồng dạng với tam giac CMD
c)Gọi I là giao điểm của AN và CM,K là giao điểm của BN và DM.Chứng minh IK // AB
Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC (C là tiếp điểm). Hạ CH vuông góc với AB, đường thẳng MB cắt nửa đường tròn (O) tại Q và cắt CH tại N. Gọi giao điểm của MO và AC là I. Chứng minh rằng:
a) Tứ giác AMQI nội tiếp.
b) Góc AQI = ACO.
c) CN = NH.
Cho nửa đường tròn tâm O đường kính AB, kẻ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với đường thẳng AB. Lấy E là một điểm thuộc nửa đường tròn ( E khác A, khác B). Tiếp tuyến của nửa đường tròn tại E cắt Ax, By lần lượt tại C, D. Gọi I là giao điểm của OC và AE. K là giao điểm của OD và BE. Xác định vị trí của E trên nửa đường tròn sao cho diện tích tứ giác EIOK lớn nhất.
Cho nửa đường tròn tâm O đường kính AB. Trên cùng một nửa mặt phẳng bờ AB vẽ các tiếp tuyến Ax, By. Lấy điểm M bất kì thuộc nửa đường tròn (M khác A và B). Kẻ MH vuông góc với AB tại H.
a) Qua M kẻ tiếp tuyến với nửa đường tròn cắt Ax,By lần lượt tại C và D. Gọi I là giao điểm của AD và BC. Chứng minh M,I,H thẳng hàng.
b) Vẽ đường tròn tâm (O') nội tiếp tam giác AMB tiếp xúc với AB ở K. Chứng minh SAMB= AK.KB
cho nửa đường tròn tâm (O) đường kính AB. lấy diểm M thuộc đoạn thẳng OA, điểmN thuộc nửa đường tròn (O). từ A và B vẽ các tiếp tuyến Ax,By. đường thẳng qua N và vuông góc với MN cắc Ax, By thứ tự tại C và D.
a) chứng minh ACNM và BDNM là các tứ giác nội tiếp đường tròn
b) chứng minh tam giác ANB đồng dạng với tam giác CMB
C) gọi I là giao điểm của AN và CM , K là giao điểm của BN và DM . chưng minh IK song song AB
Cho nửa đường tròn (O) và đường kính AB=2R. Trên nửa đường tròn lấy C ( C khác A và B). Gọi D là giao điểm của đường thẳng BC với tiếp tuyến A của nửa đường tròn tâm O và I là trung điểm của AD.
Chứng minh BC.BD= 4R2Chứng minh IC là tiếp tuyến của nửa đường tròn tâm O.Từ C kẻ CH vuộng góc với AB( H thuộc AB), BI cắt CH tại K. Chứng minh K là trung điểm của CH