Cho nửa đường tròn tâm (O) có đường kính AB = 2R. Kẻ hai tiếp tuyến Ax , By của nửa đường tròn (O) tại A và B (Ax , By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn(M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D
1) Chứng minh tam giác COD vuông tại O
2) Chứng minh AC.BD = R2
3)Kẻ MH vuông góc AB (H thuộc AB). Chứng minh rằng BC đi qua trung điểm của đoạn MH
1: Xét (O) có
CA,MC là tiếp tuyến
nên CA=CM và OC là phân giác của góc MOA(1)
Xét (O) có
DM,DB là tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
b: Xét ΔCOD vuông tại O có OM là đường cao
nên CM*MD=OM^2
=>CA*BD=R^2