Cho nửa đường tròn (O) đường kính AB. Trên nủa mặt phẳng bờ AB chứa nửa đường tròn , vẽ các tia tiếp tuyến Ax và By với nửa đường tròn. Gọi M là điểm thuộc nửa đường tròn, D là giao điểm của AM và By, C là giao điểm của BM và Ax, E là trung điểm của BD. Chứng minh rằng :
a)\(AC.BD=AB^2\)
b) ME là tiếp tuyến của nửa đường tròn
Chứng minh MN vuông góc với AB. Chứng minh MN = NH
Cho nửa đường tròn tâm 0 có đường kính AB. Vẽ các tiếp tuyến Ax By. Qua 1 điểm M thuộc nửa đường tròn, kẻ tiếp tuyến thứ 3 cắt Ax, By theo thứ tự ở C, D. Gọi N là giao điểm của AD và BC, H là giao điểm của MN và AB. Chứng minh rằng:
a. MN vuông góc với AB
b. MN=NH
Cho nửa đường tròn tâm O đường kính AB=2R. Trên nửa đường tròn lấy điểm M sao cho MB=R.
Tiếp tuyến tại M của đường tròn cắt các tiếp tuyến Ax, By lần lượt tại C và D (Ax và By cùng thuộc một
nửa mặt phẳng có bờ AB chứa điểm M)
a) Chứng minh tam giác COD vuông và AC+BD=CD
b) Tính OC theo R?
c) BC cắt đường tròn tại F (F khác B). Đường thẳng qua O vuông góc với BC cắt By tại E. Chứng minh
EF là tiếp tuyến của đường tròn (O).
d) Gọi K là giao điểm của OE và BC. Chứng minh DM=DK.
Cho nửa đường tròn tâm O đường kính AB=2R. Trên nửa đường tròn lấy điểm M sao cho MB=R.
Tiếp tuyến tại M của đường tròn cắt các tiếp tuyến Ax, By lần lượt tại C và D (Ax và By cùng thuộc một
nửa mặt phẳng có bờ AB chứa điểm M)
a) Chứng minh tam giác COD vuông và AC+BD=CD
b) Tính OC theo R?
c) BC cắt đường tròn tại F (F khác B). Đường thẳng qua O vuông góc với BC cắt By tại E. Chứng minh
EF là tiếp tuyến của đường tròn (O).
d) Gọi K là giao điểm của OE và BC. Chứng minh DM=DK.
Cho nửa đường tròn (O; R) đường kính AB. Kẻ Ax và By là hai tiếp tuyến của nửa đường tròn tại A và B. Trên Ax lấy điểm C bất kì, đường thẳng qua O và vuông góc với OC cắt By tại D. a) Chứng minh AC. BD = R2 . b) Chứng minh tam giác COD đồng dạng với tam giác ODB. c) Chứng minh CD là tiếp tuyến của (O). e) Tìm vị trí của điểm C trên Ax để tứ giác ACDB có chu vi nhỏ nhất.
Cho nửa đường tròn tâm O đường kính AB. Vẽ hai tia tiếp tuyến Ax, By (Ax, By có nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB) gọi M là 1 điểm thuộc đường tròn(AM<BM). Tiếp tuyến tại M với nửa đường tròn tại Ax, By lần lượt ở C và D
a) Tính số đo góc COD
b) Chứng minh rằng đường tròn có đường kính CD tiếp xúc với AB
Cho nửa đường tròn (O;R) đường kính AB. Vẽ 2 tiếp tuyến Ax, By với nửa đường tròn đó. Trên tia Ax lấy điểm M sáo cho AM>R. từ M kẻ tiếp tuyến MC với nửa đường tròn (O) (C là tiếp điểm). Tia MC cắt By tại D
a, CM: MD=MA+BD và tam giác OMD vuông
b, Cho AM=2R Tính BD và chu vi tứ giác ABDM
c, Tia AC cắt tia By tại K. Chứng minh OK vuông góc với BM