Cho nửa đường tròn tâm O đường kính AB=2R. Trên nửa đường tròn lấy điểm M sao cho MB=R.
Tiếp tuyến tại M của đường tròn cắt các tiếp tuyến Ax, By lần lượt tại C và D (Ax và By cùng thuộc một
nửa mặt phẳng có bờ AB chứa điểm M)
a) Chứng minh tam giác COD vuông và AC+BD=CD
b) Tính OC theo R?
c) BC cắt đường tròn tại F (F khác B). Đường thẳng qua O vuông góc với BC cắt By tại E. Chứng minh
EF là tiếp tuyến của đường tròn (O).
d) Gọi K là giao điểm của OE và BC. Chứng minh DM=DK.
a: Xét (O) có
CM là tiếp tuyến có M là tiếp điểm
CA là tiếp tuyến có A là tiếp điểm
Do đó: OC là tia phân giác của \(\widehat{AOM}\)
Xét (O) có
DM là tiếp tuyến có M là tiếp điểm
DB là tiếp tuyến có B là tiếp điểm
Do đó: OD là tia phân giác của \(\widehat{BOM}\)
Ta có: \(\widehat{AOM}+\widehat{BOM}=180^0\)
\(\Leftrightarrow2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)
hay \(\widehat{COD}=90^0\)