Cho nửa đường tròn (O;R) đường kính AB và điểm C thuộc nửa đường tròn sao cho cung AC bằng hai lần cung CB. Gọi M và N là điểm chính giữa các cung AC và BC. Nối MN cắt AC tại I. Hạ ND vuông góc với AC, CB cắt NO tại E.
a, Tính góc MIC;
b) Chứng minh DN là tiếp tuyến của (O; R)
c) Cho R = 5cm. Tính độ dài cung CB và diện tích hình quạt OCB.
Cho nửa đường tròn (O) có đường kính AB = 2R. CD là dây cung thay đổi của nửa đường tròn sao cho CD = R và C thuộc cung AD (C khác A và D khác B). AD cắt BC tại H, hai đường thẳng AC và BD cắt nhau tại F.
c) Gọi I là trung diểm của HF. Chứng minh tia OI là tia phân giác của góc COD.
d) Chứng minh điểm I thuộc một đường tròn cố định khi CD thay đổi
Bài 4 Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:
a) Tứ giác BCDE nội tiếp.
b)góc AFE= ACE.
Bài 5. Cho nứa đường tròn đường kính AB. Lấy hai điểm C và D trên nửa đường tròn sao cho cung AC= cung CD= cung DB. Các tiếp tuyến vẽ từ B và C của nửa đường tròn cắt nhau tại I.Hai tia AC và BD cắt nhau tại K. Chứng minh rằng:
a) Các tam giác KAB và IBC là những tam giác đêu.
b) Tứ giác KIBC nội tiếp.
Bài 6. Cho nửa đường tròn (0) đường kính AB và tia tiếp tuyến Bx của nửa đường tròn. Trên tia Bx lấy hai điểm C và D (C nằm giữa B và D). Các tia AC và BD lần lượt cắt đường tròn tại E và F. Hai dây AE và BF cắt nhau tại M. Hai tia AF và BE cắt nhau tại N. Chứng minh rằng:
a) Tứ giác FNEM nội tiêp.
b) Tứ giác CDFE nội tiếp.
Bài 7. Cho tam giác ABC. Hai đường cao BE và CF cắt nhau tại H. Gọi D là điểm đối xứng của H qua trung điểm M của BC.
a) Chứng minh rằng tứ giác ABDC nội tiếp được đường tròn. Xác định tâm 0 của đường tròn đó
b) Đường thẳng DH cắt đường tròn (0) tại điểm thứ hai là I. Chứng minh rằng năm điểm A, I, F, H, E cùng nằm trên một đường tròn
Các bạn giải giúp mình các bài này nhé, mình cảm ơn nhiều lắm
Bài 1: Cho nửa đường tròn (O) đường kính AB và dây cung AC. N là điểm chính giữa của cung CB. Chưng minh AN là tia phân giác của góc CAB
Bài 2: Cho tam giác ABC nhọn nối tiếp đường trnf (O) đường kính BD. Biết góc BAC bằng 45 độ. Tính số đo góc CBD
Bài 3 cho tam giác ABC nhọn có góc BAC= 60 độ. vẽ đường tròn đường kính BC tâm O cắt AB, AC lần lượt tại D và E. tính số đo góc ODE
giúp mình với mình đang cần gấp :((
Cho đường tròn tâm O đường kính AB. Gọi C là điểm chính giữa của cung AB. Trên đoạn AB lấy điểm E sao cho BE = AC. Vẽ EH vuông góc với AC tại H. Tia phân giác của góc BAC cắt EH tại K và đường tròn tại điểm thứ hai là D. Tia AC và tia BD cắt nhau tại M. Tia CK cắt AB tại I và cắt đường tròn tại điểm thứ hai là F.
Chứng minh EH // BC
Tính amb chứng minh AFEK nội tiếp
Chứng minh I là trung điểm AE.
Bài 1:
Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:
a) Góc AHN = ACB
b) Tứ giác BMNC nội tiếp.
c) Điểm I là trực tâm tam giác APQ.
Bài 2:
Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là điểm chính giữa của các cung nhỏ AC và BC. Các đường thẳng BN và AC cắt nhau tại I, các dây cung AN và BC cắt nhau ở P. Chứng minh:
a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó.
b) KN là tiếp tuyến của đường tròn (O; R).
c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định.
Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Gọi M và N lần lượt là điểm chính giữa của cung nhỏ AB và cung nhỏ BC. Hai dây AN và CM cắt nhau tại điểm I. Dây MN cắt các cạnh AB và BC lần lượt tại các điểm H và K.
1) Chứng minh bốn điểm C, N, K, I cùng thuộc một đường tròn.
Cho đường tròn tâm O đường kính AB = 2R. Gọi C là điểm chính giữa của cung AB. Trên đoạn AB lấy điểm E sao cho BE = AC. Vẽ EH vuông góc với AC tại H. Tia phân giác của góc cắt EH tại K và đường tròn tại điểm thứ hai là D. Tia AC và tia BD cắt nhau tại M. Tia CK cắt AB tại I và cắt đường tròn tại điểm thứ hai là F.
1/ Tính số đo góc
2/ Chứng minh EH // BC.
3/ Chứng minh tứ giác AFEK nội tiếp.
4/ Chứng minh I là trung điểm của đoạn AE.
Cho đường tròn (o) , đường kính AB = 4cm . Lấy điểm C thuộc (o) sao cho góc CAB = 30 độ ; M là điểm chính giữa cung nhỏ AC . Các đường thẳng Am và BC căt nhau tại I , các đường thẳng AC và BM cắt nhau tại K
a) Chứng minh góc ABM = góc IBM và tam giác ABI cân
b) Chứng minh tứ giác MICK nội tiếp
C) Đường thẳng BM cắt tiếp tuyến tại A của (O) ở N . Chứng minh đường thẳng NI là tiếp tuyển của đường tròn (B ;BA)
d) Tính diện tích hình quạt COB ( ứng với cing nhỏ CB )