Trên nửa đường tròn tâm O đường kính AB lấy điểm C khác A sao cho AC<BC
Tiếp tuyến tại B và C của nửa đường tròn tâm O cắt nhau tại D.Đường thẳng AD cắt nửa đường tròn tại M khác A,BC cắt DO tại E
gọi H là hình chiếu của C trên AB CMR đường thẳng AD đi Qua trung điểm N của CH
p\s:mình đang cần gấp sáng mai nộp bài kiểm tra
Cho nửa đường tròn tâm O đường kính AB và tiếp tuyến Ax (A là tiếp điểm, Ax nằm ở nửa mặt phẳng chứa nửa đường tròn bò là AB). Trên đoạn AB lấy điểm M (M khác A, M khác B), đường thẳng vuông góc với AB tại M cắt nửa đường tròn tâm O tại C, tia BC cắt Ax tại D. Gọi N là trung điểm của AD. Gọi H là giao điểm của ON và AC. Kẻ HE vuông góc với AN (E thuộc AN). Đường tròn đường kính NC cắt EC tại F. Chứng minh NF luôn đi qua 1 điểm cố định khi M di chuyển trên AB.
Trên nửa đường tròn tâm O, đường kính AB lấy điểm C khác A sao cho AC < BC. Tiếp tuyến tại B và C của nửa đường tròn (O) cắt nhau tại D. Đường thẳng AD cắt nửa đường tròn tâm (O) ở M và khác A, BC cắt DO tại E
1. Chứng minh tam giác ACD ~ tam giác CMD và \(\frac{AC^2}{CM^2}\)= \(\frac{AD}{DM}\)
2. Chứng minh rằng tứ giác BDME nối tiếp
3. Gọi H là hình chiếu vuông góc của C trên AB. Chứng minh rằng đường thẳng AD đi qua trung điểm N của CH
Giúp với cảm ơn nhiều (^-^)
Cho nửa đường tròn (O) đường kính AB, trên nửa đường tròn lấy điểm C (C không trùng với A, B). Gọi H là hình chiếu của C trên đường thẳng AB. Trên cung CB lấy điểm D (D khác C, B), Hai đường thẳng AD và CH cắt nhau tại E. . Gọi (O’) là đường tròn đi qua D và tiếp xúc với AB tại B. Đường tròn (O’) cắt CB tại F khác B.
Chọn khẳng định sai ?
A. Tứ giác BDEH nội tiếp
B. A C 2 = AE.AD
C. EF // AB.
D. Có 2 phương án sai .
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Cho nửa đường tròn tâm O đường kính AB và tiếp tuyến Ax (A là tiếp điểm, Ax nằm ở nửa mặt phẳng chứa nửa đường tròn bờ là AB). Trên AB lấy M (M khác A, M khác B), đường thẳng vuông góc với AB tại M cắt nửa đường tròn tâm O tại C, tia BC cắt Ax tại D. N là trung điểm AD.
a) Chứng minh NC là tiếp tuyến của nửa đường tròn tâm O.
b) Gọi H là giao điểm của ON và AC. Kẻ HE vuông góc với AN \(\left(E\in AN\right).\) Đường tròn đường kính NC cắt EC tại F. Chứng minh tia NF luôn đi qua một điểm cố định khi M di chuyển trên đoạn AB.
p/s: giải giúp mk câu b nhoa!!!
Cho nửa đường tròn tâm O đường kính AB = 2R. Trên nửa đường tròn lấy điểm C (C khác A và B). Gọi D là giao điểm của đường thẳng BC với tiếp tuyến tại A của nửa đường tròn tâm O và I là trung điểm của AD a. Chứng minh BC.BD = 4R² b. Chứng minh IC là tiếp tuyến của nửa đường tròn tâm O c. Từ C kẻ CH vuông góc với AB (H thuộc AB) BI cắt CH tại K. Chứng minh K là trung điểm của CH.
Cho nửa đường tròn tâm O có đường kính AB. Lấy điểm C trên đoạn thẳng AO ( C khác A, C khác O ). Đường thẳng đi qua C và vuông góc với AB cắt nửa đường tròn tại K. Gọi M là điểm bất kì trên cung KB ( M khác K, M khác B). Đường thẳng CK cắt đường thẳng AM, BM lần lượt tại H và D. Đường thẳng BH cắt nửa đường tròn tại N.
a) Cm tứ giác ACMD nội tiếp
b) Cm 3 điểm A,N,D thẳng hàng và tiếp tuyến tại N của nửa đường tròn đi qua trung điểm của HD
3) Khi M di động trên cung KB, chứng minh đường thẳng MN luôn đi qua 1 điểm cố định
Giúp mình phần c) nha
cho nửa đường tròn (O) đường kính AB. Gọi Ax,By là các tia vuông góc với AB (Ax,By và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB ). Qua điểm M thuộc nửa đường tròn ( M khác A và B ), kẻ tiếp tuyến với nửa đường tròn, nó cắt Ax tại C và cắt By tại D
a) CM: CD=AC+BD VÀ COD 90 độ
b) AD cắt BC tại N . CM: MN // BD
c) tích AC.BD không đổi khi điểm M di chuyển trên nửa đường tròn
d) gọi H là trung điểm của AM. Chứng minh 3 điểm O,H,C thẳng hàng