Cho nửa đường tròn đường kính AB và một dây CD. Qua C vẽ đường thẳng vuông góc với CD, cắt AB tại I. Các tiếp tuyến tại A và B của nửa đường tròn cắt đường thẳng CD theo thứ tự tại E và F. Chứng minh rằng: Các tứ giác AECI và BFCI nội tiếp được
cho nửa đường tròn, đường kính AB và một dây CD. Qua C vẽ một đường thẳng vuông góc với cd cắt AB tại I. Các tiếp tuyến tại A, B của đường tròn cắt đường thẳng CD theo thứ tự E,F. cm các tứ giác AECI và BFCI nội tiếp
Cho tam giác không vuông ABC (AB < AC), đường cao AH. Gọi E, F theo thứ tự là hình chiếu vuông góc của H trên AB và AC. Đường thằng È cắt đường thẳng BC tại D. Trên nửa mp bờ CD chứa A. Vẽ nửa đường tròn đường kính CD. Qua B vẽ đường thẳng vuông góc với CD cắt nửa đường tròn trên tại K.
a. CMR: BEFC là tứ giác nội tiếp.
b. CMR: tam giác DEK đồng dạng với tam giác DKF.
cho nửa đường tròn đường kính AB vẽ dây CD . vẽ đường thẳng vuông góc CD tại D cắt đường thẳng CD lần lượt tại E và F . chứng minh tứ giác AECI là tứ giác nội tiếp
Cho nửa đường tròn tâm O đường kính CD. A, B là hai điểm của nửa đường tròn trong đó thuộc cung BC. AC và BD cắt nhau tại E. Đường thẳng qua O vuông góc với AB và đường thẳng qua E vuông góc với CD cắt nhau tại I.Chứng minh I là tâm đường tròn ngoại tiếp tam giác ABE
Cho nửa đường tròn (O) đường kính AB và một điểm C trên nửa đường tròn. Gọi D là một điểm trên đường kính AB; qua D kẻ đường vuông góc với AB cắt BC tại F, cắt AC tại E. Tiếp tuyến của nửa đường tròn tại C cắt EF tại I. Chứng minh:
a, I là trung điểm của CE
b, Đường thẳng OC là tiếp tuyến của đường tròn ngoại tiếp tam giác ECE
Bài 4 Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:
a) Tứ giác BCDE nội tiếp.
b)góc AFE= ACE.
Bài 5. Cho nứa đường tròn đường kính AB. Lấy hai điểm C và D trên nửa đường tròn sao cho cung AC= cung CD= cung DB. Các tiếp tuyến vẽ từ B và C của nửa đường tròn cắt nhau tại I.Hai tia AC và BD cắt nhau tại K. Chứng minh rằng:
a) Các tam giác KAB và IBC là những tam giác đêu.
b) Tứ giác KIBC nội tiếp.
Bài 6. Cho nửa đường tròn (0) đường kính AB và tia tiếp tuyến Bx của nửa đường tròn. Trên tia Bx lấy hai điểm C và D (C nằm giữa B và D). Các tia AC và BD lần lượt cắt đường tròn tại E và F. Hai dây AE và BF cắt nhau tại M. Hai tia AF và BE cắt nhau tại N. Chứng minh rằng:
a) Tứ giác FNEM nội tiêp.
b) Tứ giác CDFE nội tiếp.
Bài 7. Cho tam giác ABC. Hai đường cao BE và CF cắt nhau tại H. Gọi D là điểm đối xứng của H qua trung điểm M của BC.
a) Chứng minh rằng tứ giác ABDC nội tiếp được đường tròn. Xác định tâm 0 của đường tròn đó
b) Đường thẳng DH cắt đường tròn (0) tại điểm thứ hai là I. Chứng minh rằng năm điểm A, I, F, H, E cùng nằm trên một đường tròn
Các bạn giải giúp mình các bài này nhé, mình cảm ơn nhiều lắm
Cho nửa đường tròn tâm O đường kính AB. Một điểm C di chuyển trên AO(khác A,O).Đường thẳng đi qua C vuông góc với AO cắt nửa đường tròn đã cho tại D.trên cung BD lấy điểm M(M Khác B và D).Tiếp tuyến của nửa đường tròn tại M cắt CD tại E. Gọi F là giao điểm của AM và CD.K là giao điểm của BM và CD.Gọi tâm Đường tròn ngoại tiếp tam giác AKF là I.Chứng minh rằng I luôn nằm trên một đường thẳng cố định khi C di chuyển trên AO.