Để A = n4 + 42k+1 là số nguyên tố <=> ƯC ( n4 ; 42k+1 ) = 1
=> n4 và 42k+1 chỉ có 1 ước nguyên dương
=> ( 4 + 1 )( 2k + 1 + 1 ) = 1
=> 5.( 2k + 2 ) = 1 => 10k + 10 = 1
=> 10k = - 9 => k = - 9/10
Theo đề , n và k là số tự nhiên
=> n ; k ∈ ∅
Để A = n4 + 42k+1 là số nguyên tố <=> ƯC ( n4 ; 42k+1 ) = 1
=> n4 và 42k+1 chỉ có 1 ước nguyên dương
=> ( 4 + 1 )( 2k + 1 + 1 ) = 1
=> 5.( 2k + 2 ) = 1 => 10k + 10 = 1
=> 10k = - 9 => k = - 9/10
Theo đề , n và k là số tự nhiên
=> n ; k ∈ ∅
Cho n,k là các số tự nhiên và A=n4+42k+1
Tìm n,k để A là số nguyên tố.
Cho n,k là các số tự nhiên và A=n4+42k+1
Tìm n,k để A là số nguyên tố
Cho n,k là các số tự nhiên và A=n4+42k+1
Tìm n,k để A là số nguyên tố.
Cho n,k là các số tự nhiên và A=n4+42k+1
Tìm n,k để A là số nguyên tố.
tìm tất cả các số tự nhiên n và k để n4+42k+1 là số nguyên tố
Tìm tất cả các cặp số tự nhiên n và k để \(n^4+4^{2k+1}\)là số nguyên tố
tìm số tự nhiên n và k sao cho A là số nguyên tố biết A= n4 + 42k+1
tìm số tự nhiên n để sao cho k = \(n^3-n^2-7n+10\) là số nguyên tố
Cho a, b, n là các số nguyên dương. Biết rằng với mọi số tự nhiên k khác b ta đều có k^n - a chia hết cho k - b. CMR: a = b^n