Chứng minh rằng : \(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{2^{2016}-2}+\frac{1}{2^{2016}-1}>1008\)
Chứng minh rằng :
\(\frac{1}{1+2+3+...+n}\) =\(\frac{2}{n\left(n+1\right)}\)
CM:
1+\(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...n}< 2\)
Cho dãy số : \(a_1,a_2,a_3,...,a_n\text{ }\)được xác định như sau :
\(a_1=1;a_2=1+\frac{1}{2};a_3=1+\frac{1}{2}+\frac{1}{3};...;a_n=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\)
Chứng minh rằng: \(\frac{1}{a_1^2}+\frac{1}{\text{ }2a^2_2}+\frac{1}{3a^2_3}+...+\frac{1}{na^2_2}< 2\),với \(\forall n>1\)
Cho tổng A gồm 2016 số hạng A=\(\frac{1}{19^1}+\frac{2}{19^2}_{ }+\frac{3}{19^3}+..................+\frac{n}{19^n}+.....+\frac{2016}{19^{2016}}\)
Hãy so sánh A^2016 và A^2015
Ai giải được cho 100 tick
Cho B= \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\) . Chứng minh B<\(\frac{1}{2}\)
Chứng minh rằng
\(\frac{1}{4028}< \left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{2013}{2014}\right)^2< \frac{1}{2015}\)
tinh B=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2016}}{\frac{2016}{1}+\frac{2003}{2}+\frac{2002}{3}+...+\frac{1}{2016}}\)
CHỨNG MINH RẰNG : \(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{4031}{2015^2.2016^2}< 1\)