Đề sai bạn nhé. Cho $n=9$ thì $n^2+2=83$ là số nguyên tố nhưng $n^3+2=731$ không là số nguyên tố.
Đề sai bạn nhé. Cho $n=9$ thì $n^2+2=83$ là số nguyên tố nhưng $n^3+2=731$ không là số nguyên tố.
Bài 1: Tìm n thuộc N* sao cho n3 - n2 + n - 1 là số tự nhiên
Bài 2: C/m nếu 2n - 1 (n > 2) là số nguyên tố thì 2n + 1 là hợp số
Bài 3: Cho m và m2 + 2 là số nguyên tố. C/m m3 + 2 cùng là số nguyên tố
Cho n thuộc tập hợp N* và n-10; n+10; n+60 là số nguyên tố. Chứng minh: n+90 cũng là số nguyên tố.
Chứng minh rằng nếu n và n2 + 2 là các số nguyên tố thì n 3 + 2 còng là số nguyên tố.
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
Bài 1:Cho p là một số nguyên tố lớn hơn 3 và p+8 là một số nguyên tố. Chứng tỏ p+10 phải là pợp số
Bài 2: Tìm số nguyên tố p sao cho p+2;p+4 cũng là các số nguyên tố
BÀi 11 Tìm tập hợp A các số tự nhiên n sao cho 20 thì chia hết cho n và 18 thì chia hết cho n+1
Có cả cách giả nữa nhé!!!!!!!!!!
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 ( Đây là bài của chịnhunglth đó ạ)
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
Các bạn có thể trả lời vài câu hỏi cũng được.Bạn nào trả lời được nhiều mình sẽ ủng hộ cho nha
a, Tìm số tự nhiên n sao cho(4-n)chia hết cho (n+1)
b, Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3)×(n+6) chia hết cho 2
c, Cho a, b là hai số nguyên tố cùng nhau. Chứng minh rằng a và a+b cũng là 2 số nguyên tố cùng nhau
1.Tìm số nguyên tố p sao cho p+3 cũng là số nguyên tố
2. Cho n thuộc N. Chứng minh rằng hai số n+1 và 2n+3 là hai số nguyên tố cùng nhau
1. Chứng minh rằng với mọi số tự nhiên n thì ƯCLN(21 4;14 3) 1 n n
2. Chứng minh rằng: Nếu p là số nguyên tố lớn hơn 3 và 2 1 p cũng là số nguyên tố thì 4 1 p
là hợp số?